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Abstract 
 

Tissue engineering has emerged as a promising strategy for the replacement of 

degenerating or damaged tissues in vivo. Also known as regenerative medicine, integral to this 

therapeutic strategy is biomimetic scaffolds and the biomaterial structural components used to 

form them. In this study, three different biomaterial scaffolds for tissue engineering applications 

were fabricated: three-dimensional reverse embedded collagen scaffolds, polymer fusion printed 

polycaprolactone (PCL) scaffolds, and electrospun gelatin scaffolds. Three-dimensional collagen 

and PCL scaffolds promoted human adipose-derived stem/stromal cell (ASC) spreading, 

proliferation, and fibronectin deposition in vitro. Secondly, this study investigated the efficacy of 

exogenous galectin-3 delivery as a therapeutic in skin healing, given that galectin-3 has been 

implicated in several wound healing processes. Gelatin polymer blended with recombinant 

galectin-3 was electrospun into a protein delivery scaffold and employed in a murine model of 

cutaneous wound healing. Treatment of wounds with the galectin-3/gelatin scaffolds, or with 

topical galectin-3, did not enhance wound closure, re-epithelialization, or influence macrophage 

phenotypes in vivo. 
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Summary for Lay Audience 
 
 Following injury, the body’s natural healing mechanisms mount a defense against 

invading pathogens and repair skin to close the wound. Factors such as disease and advanced age 

may reduce the body’s ability to repair, resulting in a non-healing chronic wound. Chronic 

wounds pose a severe threat, causing pain, impaired limb function, prolonged infection, and may 

require hospitalization and limb amputation. Thus, research and design of biomaterials and tissue 

engineered scaffolds attempts to initiate healing and eventually restore tissue function. In this 

study, we use scaffold fabrication methods such as three-dimensional printing and polymer 

electrospinning to design materials that mimic the natural microenvironment and stimulate 

wound healing cell responses.  
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1 Introduction 
1.1 Cutaneous Wound Healing 

1.1.1 Anatomy and Physiology of Skin 

 Skin is part of the integumentary system and represents the largest organ of the human 

body.1,2 Skin is multifunction: it acts as a selectively permeable barrier to protect the body from 

harmful pathogens in the external environment; thermoregulation is achieved through blood 

vessel control and perspiration via sweat glands; cutaneous sensory receptors, including 

mechanoreceptors, nociceptors (pain) and thermoreceptors, mediate the body’s interactions with 

the external environment.2,3 The epidermis, dermis, and subcutaneous hypodermis of skin are 

comprised of a variety of cell types with specific biological roles (Table 1).2 

 The epidermis is subdivided into five layers: the stratum basale, stratum spinosum, 

stratum granulosum, stratum lucidum, and stratum corneum.4–6 The epidermis is the outermost 

layer of skin and provides a cell-dense barrier between the body and the external environment. 

Keratin, the main structural protein found in the epidermis, is water insoluble and mechanically 

protects epithelial cells from damage or stress while preventing the invasion of foreign bodies.7 

This water-resistant barrier is synthesized by keratinocytes, which are the dominant cell type 

within the epidermis, accounting for 95% of the cells located in this layer.8 Cornification, or 

keratinization, is the process by which proliferating keratinocytes of the basal layer undergo 

terminal differentiation into highly specialized corneocytes.9,10 In this process, keratinocytes 

migrate superficially, become flat, polyhedral, anucleated, and lose 55% of their water volume.3 

Other cell types present in the epidermis include melanocytes, which produce melanosomes 

containing melanin.11,12 This protein provides skin with pigmentation and protects skin from 

ultraviolet radiation that can cause sunburn injury to skin, damage to nucleic DNA, and 

accelerated aging of skin.3 Merkel cells, also known as Merkel-Ranvier cells or tactile epithelial 

cells, are oval-shaped mechanoreceptors essential for light touch sensation in hairless skin of 

vertebrates.13,14 Langerhans cells also occupy the epidermis and act as antigen-presenting cells.15 

 The dermal layer confers pliability, elasticity, and tensile strength to skin.1–3 These 

mechanical properties are achieved through a diverse arrangement of connective tissues, cell 

types, and structural components. The extracellular matrix (ECM) is a three-dimensional 

network consisting of extracellular fibrous proteins such as reticulin, elastin, fibronectin, laminin 
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and collagen, and hydrated gels of glycosaminoglycans (GAGs) linked to proteoglycans.2,3,16 The 

ECM occupies the interstitial space, providing structural support and biochemical cues to cells, 

while also acting as a compression buffer. The most abundant ECM protein is collagen (types I 

and III), which is synthesized by dermal fibroblasts and conveys structural integrity to the skin 

by resisting stress.3 In addition to fibroblasts, various leukocyte populations (including 

neutrophils and macrophages) can enter the dermis through the vascular networks in response to 

different stimuli. Blood vessels, lined with squamous endothelial cells, can become permeable 

allowing leukocytes and clotting proteins access to connective tissue.17,18 On the outside of blood 

vessels, pericytes wrap around capillaries and confer structural integrity to the vessel wall.19 

Other components of the dermal layer include epidermally derived appendages such as hair 

follicles, nails, and sebaceous, sweat and mammary glands; also, dermal dendrocytes, mast cells, 

histiocytes, blood vessels, nerves, and lymphatics. The dermis is subdivided into the upper 

papillary dermis and lower reticular dermis, with distinctions in the structure and organization of 

collagen and elastin fibers between these sublayers. The dermal vasculature provides nutrition to 

the skin and assists the body in thermoregulation. Dilation and constriction of blood vessels leads 

to heat dissipation or conservation, respectively.20 Thermoregulation is also controlled by 

arrector pili muscles (attached to hair follicles) and sweat glands.3 Piloerection, the erection or 

bristling of hairs, traps air close to the skin for an additional layer of insulation. Endothermic 

evaporation of sweat cools the surface of the skin. 

 The subcutaneous hypodermis consists primarily of fatty adipocytes but also 

contains fibrous septa of loose connective tissue, nerves, and blood vessels. Hypodermal fat 

lobules insulate and cushion the body, provide buoyancy, and store energy.3 In addition to 

adipocytes, fibroblasts and macrophages are also found in the hypodermis. Together, the 

epidermis, dermis, and hypodermis allow skin to maintain a physical barrier to the external 

environment; if this barrier is disrupted via injury to the skin, a spatiotemporally coordinated 

process is initialed in order to restore barrier function, maintain internal homeostasis and guard 

sterility.21 

 Skin cells are continually shed and replenished through desquamation, the shedding of 

the outermost layer of the stratum corneum. In this process, individual corneocytes are shed 

following degradation of cell-cell junctions known as corneodesmosomes.22 The rate of 

corneodesmosome degradation is highly regulated.23 The self-perpetuating skin barrier is 
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maintained by permanently residing stem cells that sustain principal differentiated epidermal 

lineages, the interfollicular epidermis (IFE), sebaceous gland (SG), hair follicle (HF),24,25 and 

Merkel cell mechanoreceptors.26 Through radiation dose-survival studies, it was proposed that 

stem cells comprise about 2-7% of basal layer cells27 while another study of murine basal layer 

cells suggested a larger stem cell population, 10-12% of cells in the basal layer.28 Maintenance of 

skin homeostasis is dependent on the ability of stem cells to replenish the turnover of apoptosing 

epithelial lineages. 

Epithelial stem cells (SCs) reside in a specific microenvironment called the niche, where 

stem cell behaviour is influenced by cell-cell communication, cell-ECM interactions, and growth 

factors.29 Cutaneous mesenchymal stem/stromal cells (MSCs) include dermal papilla cells (DPC) 

involved in hair follicle cycling,30,31 and the dermal sheath cells (DSC), which are capable of 

differentiating into wound healing fibroblasts that repair the dermis.32 Human FH-derived DPCs 

and DSCs have been shown to differentiate into adipogenic and osteogenic lineages in vitro, 

suggesting multi-lineage potential of these MSCs.33 Hair follicle stem cells (HFSCs) reside in the 

follicle bulge and have been shown to give rise to IFE, HF, and SG lineages after 

transplantation.34–39 Under normal physiological conditions, however, lineage tracing in mice has 

shown that HFSCs only contribute to HF regeneration and not the SG, IFE, or infundibulum.40–45 

In the IFE, a single basal layer of  proliferative cells replenishes suprabasal terminally 

differentiated cells. This basal layer consists of a heterogeneous proliferative population of 

quiescent, long-lived IFE SCs and short-lived, differentiation-fated progenitor cells (PC).46–52  

Between the bulge and SG is the isthmus, where another pool of resident SCs maintain the 

isthmus, SG, SG ducts, and infundibulum.53–56 Epithelial SCs are normally confined to 

compartmental niches but can be activated and recruited to different regions during wound repair 

where these SCs contribute to regeneration of wounded skin.29,55,57–59
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Table 1. A summary of cutaneous cell types within the epidermis, dermis, and hypodermis. 

 Cell Type Function 
Ep

id
er

m
is

 

Keratinocyte Express involucrin and keratin; form barrier to external 
environment9 

Merkel Cell Mechanosensitive; Merkel cell-neurite complexes14 
Melanocyte Produce melanin pigment for skin colour12 

Langerhans Cell Capture microbial antigens to become antigen-presenting 
cells15 

Tissue-resident memory 
(TRM) (αβ) T Cell 

Rapid recognition of previously encountered pathogens60 

Epidermal-Resident (γδ) T 
Cell  

Balance keratinocyte differentiation and proliferation with 
the destruction of infected or malignant cells61 

D
er

m
is

 

Fibroblast Secrete ECM, mainly collagen types I and III62 

Neutrophil Phagocytosis and intracellular degradation, release of 
granules, and formation of neutrophil extracellular traps63 

Macrophage 

Classical (M1) phagocytose foreign bodies, release pro-
inflammatory cytokines64 
Alternative (M2) induce proliferation and collagen 
production, release anti-inflammatory cytokines64 

Endothelial Cell Line blood vessels (arteries, veins, capillaries and 
sinusoids)18 

Pericyte 
Contractile cells present at intervals along capillaries; 
attribute structural integrity and constrict during 
ischemia19 

Dendrocyte Antigen presentation65 

Mast Cell 
Regulate vasodilation, vascular homeostasis, innate and 
adaptive immune responses, angiogenesis, and venom 
detoxification66 

Histiocyte Connective tissue resident; phagocytosis and antigen 
presentation67 

H
yp

od
er

m
is

 

Adipocyte Store energy and cushion body68 

Mechanoreceptors* Type 1 sense quivering and touch13 
Type 2 sense vibration and pressure13 

Thermoreceptors* Cold type sense temperatures < 30°C13 
Heat type sense temperatures 32-48°C13 

Nocireceptors* 
Mechano sense significant pressure, inflammatory 
mediators, ischemia mediators13 
Polymodal sense inflammatory mediators13 

Pruriceptors* Sense histamine and inflammatory mediators13 
*Cutaneous sensory endings of the peripheral nervous system innervating the skin derive from 
the dorsal root ganglia and the trigeminal ganglia. Nerves in the skin form epidermal plexus from 
which some fibres cross the dermo-epidermal junction.13 
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1.1.2 Acute Wound Healing 

 Following injury, normal wound healing is achieved via four overlapping phases: 

hemostasis, inflammation, proliferation, and remodeling (Table 2). Thrombin, the principal 

enzyme involved in hemostasis, is produced primarily in the liver and circulates systemically in 

the blood plasma. This serine protease cleaves fibrinogen to create a polymerized fibrin matrix 

that captures circulating platelets to form a hemostatic plug and establish hemostasis.69 Within 

the first hour post-injury, inflammatory cytokines such as interleukin (IL) -1α, IL-1β, IL-6, IL-8, 

tumor necrosis factor (TNF) -α, platelet derived growth factor (PDGF), and transforming growth 

factor (TGF) -β, are released by aggregated platelets to recruit early inflammatory cells and 

initiate healing.70 When injury first occurs, vasoconstriction is induced locally to reduce blood 

loss. However, this is subsequently reversed to allow changes in blood flow, an increase in 

permeability of blood vessels, and the infiltration of fluid, proteins, and leukocytes from the 

circulatory system into the site of tissue damage.  

 Recruited leukocytes produce a chemotactic gradient that stimulates the migration of 

neutrophils, monocytes, smooth muscle cells (SMCs), and fibroblasts. Neutrophils, which 

comprise 60-70% of the leukocyte population, are part of the innate immune response and one of 

the first cell types to respond to injury. Neutrophils are granulocytes and lack immune memory; 

they function by releasing reactive oxygen species to produce toxic metabolites (hydrogen 

peroxide) that kill invading bacteria and certain fungal species, secreting serine proteases and 

matrix metalloproteinases (MMPs) to debride necrotic tissue, and phagocytosing dead bacteria 

and wound debris.70 Neutrophils cannot renew their lysosomes and are short-lived, resulting in 

the formation of a white exudate called pus within the wound bed. Monocytes responding to 

paracrine signals, including TGF-β, differentiate into macrophages capable of phagocytosing 

debris and exhausted neutrophils. Macrophages that are classically activated (M1 polarization), 

typically by interferon (IFN) -γ or lipopolysaccharide (LPS) in vitro, produce pro-inflammatory 

cytokines, phagocytize microbes, express inducible nitric oxide synthase (iNOS), and produce 

nitric oxide (NO) or reactive oxygen intermediates (ROI) to protect against bacteria and viruses. 

Alternatively activated (M2) macrophages, typically activated by exposure to certain cytokines 

such as IL-4, IL-10, or IL-13, produce either polyamines to induce proliferation or proline to 

induce collagen production. These M2 macrophages secrete arginase I and anti-inflammatory 

cytokines, and consequently are associated with resolution of the inflammatory phase, pro-
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regenerative wound healing and tissue repair. Following exhaustion of inflammatory cells, 

exocytotic release of a second wave of signaling molecules, including TGF-α, TGF-β, fibroblast 

growth factor (FGF) 2/basic FGF (bFGF), PDGF, and vascular endothelial growth factor 

(VEGF), recruits keratinocytes, fibroblasts, endothelial cells, and pericytes to initiate the overlap 

of late-stage inflammation with the proliferative stage of healing.71 

 During fibroplasia, fibroblasts proliferate and migrate into the wound bed, depositing 

collagen-rich ECM to slowly replace the fibrin clot with a permanent matrix.72 This ECM 

improves structural integrity of the damaged site and provides a supportive scaffold for 

neovascular growth (angiogenesis) and re-epithelialization.73 Through cadherin-11-mediated 

adhesion between macrophages and fibroblastic cells, TGF-β-producing macrophages and TGF-

β-activating myofibroblasts are held in close proximity, facilitating efficient myofibroblast 

activation and stimulating fibrosis.74 Persistent fibroplasia leads to the accumulation of a dense 

fibrotic scar tissue.72 As ECM is deposited, re-epithelializing keratinocytes upregulate anti-

fibrotic urokinase-type plasminogen activator, MMP-1 and MMP-3, and downregulate pro-

fibrotic connective tissue growth factor 2 (CCN2), collagen I and II, fibronectin, plasminogen 

activator inhibitor-1, α-smooth muscle actin (α-SMA), and tissue inhibitor of matrix 

metalloproteinase (TIMP)-2/3.75 Maturation of the granulation tissue, composed of the newly 

deposited collagen network and migrating endothelial cells and macrophages, is enhanced by 

angiogenesis and re-epithelialization.76 

 Angiogenesis, vascular growth from pre-existing vasculature via endothelial cell 

migration, proliferation and vessel formation, re-establishes normoxia and nutrient supply to 

tissues.71,77 Post-injury hypoxic conditions promote the release of inflammatory mediators to 

increase vascular permeability and dilation, facilitating endothelial cell migration into the 

wounded tissue.78,79 Angiogenic factors, particularly VEGF-A and FGF-2/bFGF, promote 

endothelial cell proliferation and the formation of new capillary tubules in the developing 

granulation tissue to restore vascularization.80–83 To prevent excessive scar formation, wound 

progression through fibroplasia and angiogenesis must be tightly regulated. Proteolytic ECM 

remodeling decreases ECM density, decreases cell-ECM interactions (by cleaving matrix 

components such as collagen, fibronectin and laminin84), and releases matrix-bound angiogenic 

factors to stimulate endothelial cell migration.85 
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During re-epithelialization, epithelial cell proliferation and migration is initiated. 

Fibroblasts and macrophages release epidermal growth factor (EGF), TGF-α and FGF, initiating 

re-epithelialization.86 Hemidesmosome links between the epidermis and the basement membrane 

separate, releasing cell-ECM linkages. Keratinocyte migration over the granulation tissue 

separates the eschar from viable tissue. Behind the migrating epithelial tongue, keratinocytes 

proliferate and mature, ultimately restoring the barrier function.87 Macrophages secrete TGF-β 

that signals fibroblasts to migrate into the granulation tissue and produce new ECM 

components.88 Macrophage-activated myofibroblasts, highly contractile cells, anchor to the ECM 

and contract the wound, pulling opposing edges together.86,87 Myofibroblast contractility is 

dependent on a positive feedback loop initiated by endogenous TGF-β and tensile forces, which 

increases the density of α-SMA enrichment in stress fibers, increases force production and 

tension development, and consequently upregulates TGF-β. Re-modeling of granulation tissue 

occurs as fibroblasts upregulate expression of collagen I, and MMPs degrade the temporary 

collagen III matrix. In the final stages of remodeling, the scar tissue consists of mainly an 

acellular matrix of parallel collagen I fiber bundles.87,89,90 The repaired tissue which has the 

composition of a scar does successfully restore barrier function, but possesses approximately 

80% of the mechanical elasticity of unwounded skin.87,91 However, in certain instances, skin can 

remain compromised and demonstrate a reduced ability to heal. 
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 Table 2. Spatiotemporal coordination of normal wound healing. 

 

  

Post-
Injury 
Period 

Within 
Minutes 

Within 
Hours ~3 Days ~1 Week Weeks Years 

Wound 
Healing 

Stage 
Hemostasis Inflammation Proliferation Remodeling 

Active Cell 
Types 

-Platelets -Neutrophils 
-M1 
macrophages 
-Mast cells 

-Fibroblasts 
-M2 macrophages 
-Endothelial cells 
-Keratinocytes 

-Myofibroblasts 

Major 
Events 

-Vasoconstriction 
-Hemostatic plug 
formation 
-Chemotactic 
recruitment of 
inflammatory 
cells 

-Inflammatory 
cell migration 
into the wound 
bed 
-Defense 
against foreign 
infection 

-Granulation tissue 
-Fibroplasia 
-Randomly oriented 
ECM 
-Angiogenesis 
-Re-epithelialization 

-Parallel collagen 
ECM 
-Contraction of 
wound bed 
-Scar 
management 
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1.1.3 Chronic Wounds 

Reduced ability to heal is often the result of a variety of morbidities including vascular 

insufficiency, diabetes, malnutrition, patient age, pressure, infection, and edema.70 A persistent 

tissue injury that fails to proceed through the reparative process after 3 months is classified as a 

chronic (non-healing) wound.92 Such wounds become a significant burden to the patient, causing 

pain, impaired limb function, sepsis, hospitalization and the need for amputation. Worldwide, 

chronic wounds account for approximately 4% of the global healthcare expenditure.93–96 Within 

Canada, chronic wounds pose a significant burden to the Canadian healthcare system, costing on 

average $10,000 to treat a single wound.97 The most common chronic wound classifications are 

venous leg ulcers (VLUs), arterial ulcers, diabetic foot ulcers (DFUs) and pressure ulcers (PUs). 

The largest class by occurrence is VLUs, caused by chronic venous insufficiency as a 

result of trauma, aging, obesity, pregnancy, phlebitis, deep vein thrombosis, congestive heart 

failure, and a history of ulcers.70,89 Arterial ulcers, formed following arterial disease and 

inadequate blood supply to the skin, are most commonly the manifestation of systemic 

atherosclerosis.98,99 DFUs affect approximately 10% of diabetics annually.89 Hyperglycemia-

induced impaired nerve function reduces sensation, causing foot deformity, limited joint 

mobility, and structurally compromised peripheries.98 DFUs most frequently appear on the sole 

of the foot where peripheral neuropathy of the foot increases the risk of ulceration from repeated 

mechanical stress.100 Finally, PUs are localized areas of necrotic tissue formed as a result of 

extended periods of soft tissue compression, causing localized hypoxia and ischemic-reperfusion 

injury. PUs, also called bedsores or decubitus ulcers, are associated with impaired mobility, 

decreased level of consciousness, diabetes mellitus, peripheral vascular disease, malnutrition, 

and fecal/urinary incontinence.101 With increasing prevalence of obesity, diabetes and 

atherosclerosis, as well as an aging population, the impact of chronic wounds on the healthcare 

system will continue to rise. 

At the molecular level, chronic wounds are characterized by dysfunctional proteolytic 

activity and prolonged inflammation, bacterial infection, cellular senescence and constrained cell 

proliferation.102 Enrichment of proteases and reactive oxygen species leads to a deficient ECM 

structure, damages cell membranes leading to premature senescence, and interferes with the 

transcription of pro-inflammatory signaling molecules, up-regulating various MMPs and down-

regulating antagonistic TIMPs.103,104 Prolonged inflammation and greater than normal 
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populations of neutrophils and macrophages are hallmarks of chronic wounds. Abundance of 

these inflammatory cells cause accumulation of proteolytic factors such as MMP-9, neutrophil 

elastase, and proteinase-3 within chronic wounds, indicating a disturbed balance between 

proteases and their inhibitors.105 This imbalance can lead to the excessive breakdown of matrix, 

ultimately hindering re-epithelialization and angiogenesis. 

During prolonged inflammation, neutrophils and macrophages release pro-inflammatory 

cytokines such as IL-1β and TNF-α which advances further MMP and TIMP imbalance. Under 

normal conditions, pro-fibrotic macrophages release soluble factors (such as TGF-β, PDGF-β 

and galectin-3) to counteract the degradation of extracellular matrix by MMPs.106 TGF-β, PDGF-

β and galectin-3 increase the deposition of matrix and the release of TIMPs by myofibroblasts. 

Chronic wounds however represent a function of significantly increased neutrophil and pro-

inflammatory macrophage populations. Thus, the switch from inflammation to proliferation, 

requiring downregulation of anti-inflammatory factors and initiation of fibroplasia, 

neoangiogenesis, and remodeling, is severely compromised in chronic wounds. In particular, the 

expression of IL-1β and TNF-α is upregulated during pathological wound healing.86,107,108 These 

cytokines signal macrophages to release MMPs, and also suppress the synthesis of ECM proteins 

and TIMPs. A structurally immature ECM reduces or inhibits cellular migration, prolonging the 

wound healing process.86,107,108 This characteristic unbalanced proteolytic activity results in 

extreme degradation of ECM components, protease inhibitors, growth factors, and other wound 

repair mediators, creating a harsh microenvironment with abnormal biochemical and physical 

cues. Wound healing cell types rely on biochemical and physical signals in order for normal 

cellular activity to take place, which again delays the final stages of wound healing. Bacterial 

colonization of the affected tissue is an additional challenge resulting from compromised barrier 

function. This continuous bacterial presence contributes to a feedforward mechanism which 

elevates the proinflammatory response, preventing inflammatory resolution even further. 

Substantial bacterial presence generates a biofilm, a slippery buildup of bacteria, which impedes 

wound closure and blocks topical application of antibiotic treatments.105,109–111 

Angiogenesis normally ensures adequate nutrition and oxygenation during tissue healing. 

However, in the chronic wound microenvironment, antiangiogenic factors, for example 

myeloperoxidase, are upregulated while angiogenic stimulators, such as extracellular superoxide 

dismutase and VEGF, are diminished.112 Proteolytic degradation of angiogenic factors and 
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pathological angiogenesis are possible mechanisms that lead to the development of inadequate 

capillary growth witnessed in chronic venous leg ulcers.113–116 

 

1.1.4 Clinical Treatment of Chronic Wounds 

 Medical intervention for a chronic wound includes debriding (cleaning) the affected 

region, removal of necrotic tissue, management of localized and systemic infection, application 

of bandages, mechanical off-loading to reduce shear forces on the skin and injury recurrence, and 

restoration of blood flow to the wounded tissue.117 Furthermore, the application of advanced 

multidisciplinary wound care strategies, such as combining pressure off-loading and 

revascularization with biomedical engineering approaches, has under certain circumstances 

significantly improved chronic wound healing outcomes.118–120 

 Debridement involves the removal of unwanted calluses, necrotic tissue, foreign debris, 

and pathogens from the wound in order to minimize infection and expose underlying healthy 

tissue to the wound edge.90 Surgical debridement is the preferred method and involves excising 

tissue with scissors or a scalpel. However, this procedure can be painful and may damage viable 

tissue depending on the surgeon’s ability to distinguish regions of affected tissues from 

unaffected. Thus, a more accurate means of targeting only the nonviable tissue is by autolytic 

debridement, which degrades nonviable tissue via the catabolic action of endogenous enzymes. 

DuoDerm, a clinically available hydrocolloid dressing with autolytic properties, reduced 

pericapillary fibrin cuffs that can cause venous disease and chronic venous ulcers.121 Similarly, 

enzymatic debridement involves exogenous enzymes added exogenous to topical ointments to 

degrade and remove necrotic material from the wound bed.122 Collagenase, the sole enzymatic 

debriding agent approved by the Federal Drug Association (FDA), degrades bioactive fragments 

within the wound bed in order to increase endothelial cell and keratinocyte migration.123 Lastly, 

biosurgical debridement involves the usage of medical grade maggots (Lucilia sericata, 

Phaenicia sericata, Lucilia cuprina) that ingest necrotic tissue.122,124–126 

 Infection management includes the use of cleansing agents such as water, saline, or 0.5% 

acetic acid, and topical antimicrobials such as low-concentration povidone iodine, cadexomer 

iodine gel beads, metronidazole gel, silver, and medical grade manuka honey, to reduce bacterial 

growth.122 Unchecked bacterial invasion can be detrimental as infection spreads into adjacent 
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tissues, leading to necrotizing infection, gangrene, or deep abscesses with the need for 

amputation.127 

 Covering a wound with dressings provides protection from infection, maintains moisture, 

absorbs exudate, and promotes tissue regeneration.89,122 Specifically, moisture-retentive wound 

dressings (MRWDs) limit moisture vapor transmission from the wound to less than 35 g/m2/hr, 

which promotes keratinocyte migration and wound healing.128–130 MRWDs can be fabricated 

from films, foams, hydrocolloids, alginates, and hydrogels. 

 MRWDs differ in their efficacy, advantages and disadvantages (Table 3). Films are 

comprised of thin, elastic sheets of polyurethane applied mainly to the site of acute surgical 

wounds.90,122 While films are gas permeable, transparent for visual inspection of wound 

progression, and exclude bacteria from entering the wound, they offer limited liquid drainage 

and can also damage tissue when removed. MRWD foams are moisture absorbent, comfortable 

to wear, and drape over tissue, but may require application of additional dressings to facilitate 

occlusion or drainage.90,122,131 Hydrocolloid dressings combine a foam or polyurethane film 

dressing with a hydrocolloid matrix that, when applied to wound exudate, forms a gel that 

promotes autolytic debridement and granulation tissue formation.90,122,131 However, 

hydrocolloids should not be employed for highly exudative or infected wounds as they may 

cause skin maceration.132,133 Alginate dressings are composed of sodium and calcium salts of 

alginic acid. Alginates have haemostatic properties, thus are highly absorbent and ideal for 

highly exudative wounds, but not for dry wounds.90,122,131 Lastly, hydrogels are macromolecular 

polymer gels that absorb wound exudate and stimulates autolytic debridement.90,122 Hydrogels 

may be applied to a range of wounds from mildly to highly exudative, but maceration can 

occur.131 These MRWDs are largely passive dressings, and the ideal clinical treatment of chronic 

wounds would also possess an ability to actively stimulate biological healing responses. 

 Bioengineered skin substitutes, in addition to retaining moisture, stimulate healing and 

are of interest in tissue engineering and regenerative medicine. Epidermis substitutes, including 

Epicel®, Epidex®, Myskin®, Bioseed®, and Cellspray®, are predominantly autogenic 

keratinocyte expansions formulated into delivery dressings or as suspensions that can be 

topically ejected or sprayed onto the wound site.134 Dermal substitutes are 3D biomaterial 

matrices that match the native ECM in terms of structural, elastic, and mechanical properties. 

Acellular dermal substitutes, such as Oasis® and Alloderm®, are nonimmunogenic, 
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mechanically robust, and can be used off the shelf; however, these substitutes depend on host 

cell infiltration to initiate angiogenesis and remodeling.134 In contrast, collagen-GAG cellular 

matrices such as Dermagraft® and OrCel® are pre-seeded with neonatal human foreskin 

fibroblasts and/or keratinocytes and have been shown to reduce wound contractility to allow re-

epithelialization to restore a more natural tissue barrier.135,136 Bilayer skin substitutes contain 

both epidermal and dermal components. Apligraf® is an FDA-approved skin substitute 

consisting of an epidermal neonatal human foreskin keratinocyte layer and an underlying dermal 

bovine type I collagen layer seeded with neonatal human fetal fibroblasts.90,122 Apligraf® 

dressings already contain within them the cells responsible for the production and delivery of 

cytokines, growth factors and ECM components to the wound bed, however these bilayer 

substitutes are expensive and have a limited shelf life of 5-10 days.137,138 

Healing outcomes can also be influenced by employing adjuvant therapees in conjunction 

with standard medical practice. Negative-pressure wound therapy (NPWT) or vacuum-assisted 

closure therapy applies sub-atmospheric pressure to a local area of tissue damage through a 

specialized pump.139  NPWT reduces tissue edema, improves circulation, promotes granulation 

tissue formation and inhibits bacterial growth.140 Hyperbaric oxygen therapy (HBOT) involves 

briefly inhaling 100% oxygen while inside a pressurized chamber.141 Heightened blood and 

tissue oxygenation by HBOT improves oxygen delivery to hypoxic tissues and vasoconstricts 

surrounding healthy tissue, alleviating edema and permitting innate biological combating of 

infection and ischemia to ensue.142 Topical addition of growth factor formulations have also been 

used in chronic wound healing. For instance, a gel composition of recombinant PDGF 

(Regranex®/Becaplermin) has been employed to mediate cell division, migration and 

proliferation. Daily Becaplermin application significantly aided wound closure in PUs and in 

DFUs.143,144 However, there is increased risk of cancer mortality associated with excessive use 

(three or more dispensaries) of Becaplermin.145 Notably, a significant limitation of topical 

growth factors is their rapid proteolytic degradation.146 

Current clinical strategies, including wound debridement, moisture-retentive dressings, 

and adjuvant therapies, have various disadvantages and do little to resolve a chronic wound. In 

Canada, 3.5 million individuals live with diabetes and DFUs will affect one quarter of these 

patients.95,147 DFUs are the most common cause of non-traumatic lower limb amputations, with 

20% of DFU patients requiring amputation.89 Furthermore, these amputations are associated with 
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a high of mortality rate; in Canada, 30% of patients with diabetes die within one year of 

amputation and 69% of patients within five years.96,148 Despite the multitude of wound healing 

products available, chronic wounds continue to be a significant burden on patients and the 

healthcare system. In recent years, attention has focused on development of biologically active 

and tissue mimetic technologies.   
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Table 3. Examples of clinically available moisture-retentive wound dressings.90,122,149,150 

Category Advantages Disadvantages Examples 

Films 

-Suitable for flat, 
shallow wounds with 
low to medium 
exudates 
-Promote moist 
environment 
-Adhere to healthy 
skin but not to wound 
-Allow visual checks 
-May be left in place 
several days 
-Useful as secondary 
dressing 

-Provide no 
cushioning 
-Not for infected or 
heavily exuding 
wounds 

Tegaderm (3M 
Healthcare), Polyskin II 
(Kendall Healthcare), 

Bioclusive (Johnson & 
Johnson Medical), 

Blisterfilm (The Kendall 
Co), Omniderm 

(Omikron Scientific Ltd), 
Proclude (ConvaTec), 
Mefilm (Mölnlycke 

Health Care), Carrafilm 
(Carrington Lab), and 
Transeal (DeRoyal) 

Foams 

-Flat, shallow wounds 
(control of exudate 
depending on type of 
foam) 
-Provide a degree of 
cushioning 

-Need secondary 
dressing 
-Need to be replaced 
after 2 to 3 days 

Polymem (Ferris Corp), 
Allevyn (Smith & 
Nephew United), 

Biopatch (Johnson & 
Johnson Medical), 

Curafoam (The Kendall 
Co), Flexzan (Dow 

Hickam), Hydrasorb 
(Tyco/Kendall Co), 

Lyofoam (ConvaTec), 
and Mepilex (Mölnlycke 

Health Care) 

Hydrocolloids 

-Useful for flat, 
shallow wounds with 
low to medium 
exudate 
-Absorbent 
-Conformable 
-Suitable for heel, 
elbow, sacrum 

-May cause 
maceration 
-Need secondary 
dressing 

Duoderm (ConvaTec), 
NuDerm (Johnson & 

Johnson Medical), 
Comfeel (Coloplast 

Sween, Inc), Hydrocol 
(Dow Hickam), Cutinova 

(Smith & Nephew), 
Replicare (Smith & 

Nephew United), and 
Tegasorb (3M) 

Alginates 

-Useful in cavities and 
for undermining 
wounds 
-Highly absorbent 

-Need secondary 
dressing 
-Need to be changed 
daily 

Algiderm (Bard), 
Algisite (Smith & 
Nephew), Algisorb 
(Calgon-Vestal), 

Algosteril (Johnson & 
Johnson Medical), 

Kaltostat (ConvaTec), 
Curasorb (The Kendall 

Co), Sorbsan (Dow 
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Hickam), Melgisorb 
(Mölnlycke Health Care), 
SeaSorb (Coloplast), and 

Kalginate (DeRoyal) 

Hydrogels 

-Supply moisture to 
wounds with low to 
medium exudate 
-Suitable for sloughy 
or necrotic wounds 
-Useful in flat wounds 
and cavities 
-May be left in place 
several days  

-Need secondary 
dressing 
-May cause 
maceration 

Vigilon (CR Bard), Nu-
gel (Johnson & Johnson 
Medical), Tegagel (3M), 

FlexiGel (Smith & 
Nephew), Curagel (The 
Kendall Co), Clearsite 

(Conmed Corp), Curafil 
(The Kendall Co), 

Curasol (The Kendall 
Co), Carrasyn 
(Carrington 

Laboratories), Elasto-Gel 
(SW Technologies), 

Hypergel (Scott Health 
Care), Normgel (SCA 

Hygiene Products), 2nd 
Skin (Spenco Medical, 

Ltd), and Transigel 
(Smith & Nephew) 

  



www.manaraa.com

 
 

17 

1.2 Tissue Engineering and Regenerative Medicine 
Tissue engineering is an area of research that is focused on the combination of natural 

and synthetic scaffolds, cells, and biologically active molecules in an attempt to form 

biologically functional tissues. Similarly, regenerative medicine describes the use of engineered 

biological materials in conjunction with the body’s innate proliferative mechanisms to expand 

cell populations and reconstruct tissues in vivo. Focuses of tissue engineering research include 

the development of bioengineered materials, skin substitutes, biomolecule delivery systems, and 

stem cell therapies. 

 

1.2.1 Biomaterial Scaffold Design Requirements 

 Biomaterials can be considered natural or synthetic materials that are designed to interact 

with biological tissues for augmenting or replacing a native tissue. Tissue engineering scaffolds 

have the potential to mimic the native extracellular matrix at the nanoscale level, which is 

important for matrix production, neoangiogenesis and cellular ingrowth, leading to regeneration 

of tissues.151 Biomaterials must be biocompatible, nonimmunogenic, and if desirable, 

biodegradable; that is, a biomaterial should perform safely within the biological environment and 

any degradation products should be nontoxic. Scaffold structures should ideally mimic native 

ECM and display a fiber diameter of 50 to 500 nm, 90% porosity, and average pore size of 100 

μm to facilitate mass transfer and cell infiltration.152–156 Various fabrication methods for 

construction of three-dimensional biomimetic scaffolds have been investigated, including 

electrospinning, phase-separation, freeze drying, and self-assembly.157 However, the challenge of 

fabricating complex and functional tissues still exists. Current biomaterial fabrication methods 

are limited in the ability to control hierarchical architecture of scaffolds, formed by nanofibers 

and nanopores. The insufficient vascularization systems of biological substitutes results in 

limited diffusion properties of these biomimetic scaffolds.157 As a consequence, biomaterial 

scaffolds contain a necrotic center where oxygen transport, nutrient deposit, and waste removal 

are limited, and viable cells do not penetrate. As such, a scaffold manufacturing technique with 

controlled material deposition is desirable in order to create complex architectures with 

optimized porosity. 
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1.2.2 Three-Dimensional Bioprinting 

Additive manufacturing (AM), also known as three-dimensional (3D) printing, is a 

mechanized fabrication method that builds objects by repeatedly depositing material layer-by-

layer. Adjacent layers fuse together during the process until the final object has been achieved. 

This technique first requires the creation of a 3D digital model that is generated using computer-

aided design (CAD) software. Since building takes place layer-by-layer, the 3D model must be 

sliced into horizontal planes in order to generate a G-code, or programming language that will 

control the printer’s extrusion path.158 A basic 3D printer typically includes a movable print bed 

that can displace in the vertical (Z) direction and supports the print object, an ejector nozzle that 

moves in the horizontal (X, Y) plane, and the print material, which can be a wide range of 

materials, from plastics and metals to soft materials. G-code is sent to the printer and the object 

can be 3D printed.158,159 Advantages of 3D printing include the availability of low-cost hardware 

that is easily customizable, free, open-source software, and limited waste of print materials.160 

 In 3D bioprinting, the print material is often referred to as a “bioink.” Material properties 

to consider when choosing a bioink include the desired print resolution, ability for the printed 

device to be easily sterilized, shear strength and ability to recover scaffold shape, and the 

material stiffness. As is required for all biomaterials, bioinks need to display biological 

compatibility with cells and the body such that the biomaterial can adequately function in the 

biological environment while minimizing any foreign-body response mounted by the host 

immune system.161 Furthermore, optimized biomaterials should also exhibit the ability to be 

remodeled, biodegraded and bioadsorbed by cells, producing nontoxic degradation products.161 

Commercially available bioinks include native structural extracellular matrix proteins such as 

collagen, gelatin, hyaluronic acid, and calcium phosphate.162 

Three-dimensional printing of soft materials, such as photocurable resins, polymer 

powders, or thermoplastic monofilaments, creates the additional challenge of apparent ink 

viscosity, which can cause the print material to flow out of its extruded shape.163 One approach 

to 3D printing of soft materials is to eject the ink layer-by-layer into a secondary yield-stress 

support bath, embedding the print object in a granular medium. Embedding scaffold structures 

into a temporary, sacrificial support material is advantageous in that this technique allows for the 

printing of soft natural and synthetic materials that exhibit low viscosities prior to self-

polymerization and gelation, allowing for the production of structures with complex architectures 
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and porous regions. Freeform reversible embedding of suspended hydrogels (FRESH), is a type 

of 3D printing that utilizes a support bath with reversible gelation properties, such that the bath 

can be liquified in order to liberate the 3D printed object post-printing.164–166 

 

1.2.3 Collagen-Based Biomaterials  

Twenty-nine collagen types have been identified which account for 33% of the protein in 

humans and 66% of the dry weight of skin.167 Collagen types I-III, V, and XI have fibrillar 

quaternary structures. Collagen molecules are comprised of three polypeptide chains aligned in a 

parallel manner and coiled in a left‐handed polyproline II‐type (PPII) helix.168 These chains 

arrange themselves further into a right‐handed triple helix that is stabilized by interstrand 

hydrogen bonds and intrastrand non-covalent interactions.169 Animal collagens arranged in triple 

helices, known as tropocollagen, form macroscopic fibers and extracellular matrix networks in 

tissue, bone, and basement membrane. Ninety percent of the total collagen content in human skin 

is type I collagen, and this type is most frequently employed for biomedical applications.170 

Biomaterial scaffolds fabricated using collagen have been applied extensively as a major 

component in dermal skin substitutes due to collagen’s high biocompatibility, biodegradability, 

and molecular composition.171 Collagen extraction for biomedical application is commonly from  

bovine skin and tendons; porcine skin, intestine, or bladder mucosa; and rat tail sources.172 The 

quality and properties of extracted collagen depends on the source species and the tissue from 

which it was harvested. One risk associated with collagen derived from animal sources is allergic 

reaction and pathogen transmission.173,174 To overcome this complication, recombinant collagen 

can be produced via heterologous expression in mammalian, insect, yeast, or bacterial cells.175–

177 Biorecognition of collagen is necessary since may cell-surface portions interact and bind to 

collagen. Cell-collagen communications are mediated by four different kinds of proteins: Pro‐

Hyp‐Gly-recognizing receptors (for example, glycoprotein VI); integrin family receptors; 

integrin‐type receptors that recognize cryptic motifs within collagen; and receptors with affinity 

for non-collagenous domains.178,179 Proteins containing Arg-Gly-Asp or similar integrin‐

recognition sequences, such as decorin and laminin, can bind to both collagen and integrins, 

promoting cell adhesion and proliferation.180 

Collagen types I-III are hydrolyzed by collagenases MMP‐1, MMP‐2, MMP‐8, MMP‐13, 

and MMP‐14. Intrinsic biodegradability by endogenous collagenases makes exogenous collagen 
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ideal for use in biomedical applications. Exogenous degradation products of collagen types I-III 

have been shown to induce chemotaxis of human fibroblasts and is thought to promote 

regeneration of tissue structure and functionality.181,182 Collagen can be cross-linked via chemical 

cross-linking agents including formaldehyde, glutaraldehyde, carbodiimides, polyepoxy 

compounds, acyl azides, and hexamethylene diisocyanate;167 physical cross-linking methods 

using ultraviolet light or dehydrothermal treatment;183 and enzymatic cross-linking such as via 

tissue transglutaminase.184 Although chemical cross‐linking can enhance biomaterial stability, 

residual electrophilic reagents and compounds produced upon degradation in vivo can be 

cytotoxic. An advantage of cross-linking with enzymes is this method is benign and generates no 

cytotoxic byproducts. 

Despite limitations such as immunogenicity of xenogeneic sources and high costs, the use 

of natural biological materials is of interest in biomaterial fabrication. For instance, collagen-

based biomaterials have been demonstrated for a variety of applications, including neural stem 

cell scaffolds,185 cartilage,186,187 osteochondral,188 and skin.189 Tissue substitutes comprised of 

natural biomaterials have garnered interest for applications in transdermal and topical 

formulation discovery, dermal toxicity studies, and autologous grafts for wound healing. 

Collagen-based biomaterials can be classified as either decellularized collagen matrices or more 

refined scaffolds based on the extent of their purification. Decellularized collagen matrices 

maintain the natural tissue properties and ECM structure; cellular matter is removed from 

collagen matrix by physical methods such as snap freezing or high pressure, chemical treatment 

with acid or alkali treatment, chelation with EDTA, or treatment with detergents or solutions of 

high osmolarity, and trypsin enzymatic digestion to produce the biomaterial.190 In contrast, more 

refined scaffolds are fabricated via collagen protein extraction, purification, and polymerization. 

Natural collagen can dissolve in aqueous solutions depending on the extant cross-linking. 

Refined scaffolds require collagen to first be dissolved in aqueous solution; the most common 

solvent systems include a neutral NaCl solution, dilute acetic acid, or a solution of proteolytic 

enzymes.167  

 

1.2.4 Polycaprolactone-Based Biomaterials 

In certain cases, the use of natural materials is not possible and thus synthetic materials 

have been proposed. Advantages of synthetic materials include high reproducibility, availability, 
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consistent quality, and tunable material properties.191 One such example of a widely employed 

synthetic material is polycaprolactone (poly(ϵ-caprolactone), PCL), a biocompatible polyester. 

PCL is a semi-crystalline, aliphatic polymer, having highly ordered molecular structure.192 The 

structure comprises of a repeating unit of one ester group and five methylene groups. Its melting 

temperature is above body temperature, thus within the body the semi-crystalline structure of 

PCL results in high toughness.193 Advantages of PCL include its strength and durability, which 

are tunable, and its ease of fabrication while allowing for precise control of product 

architecture.194 

PCL is degraded in the body under physiological conditions via hydrolytic mechanisms. 

Due to its high molecular weight, the polyester has a slow degradation rate of approximately two 

years in the biological environment.195–197 PCL is biocompatible and non-toxic, while its 

durability means that PCL has less chance to induce immunological effects.198 Physical 

properties of PCL are easily manipulated by compounding the polymer with secondary 

constituents. By using a copolymer of PCL with dl-lactide, a more flexible material with a faster 

degradation rate than the homopolymer can be achieved.195 Moreover, the high degree of 

permeability has made PCL an important candidate for the development of drug delivery systems 

and in bone tissue regeneration.199–203 

PCL has been established as an important biomaterial. It has been approved by the Food 

and Drug Administration (FDA) for several medical applications, including suture materials and 

subdermal contraceptive implants.192,204,205 In dentistry, PCL has been employed as a root canal-

filling material; PCL-filled roots demonstrated proper seals to protect against the aqueous 

environment.206 In wound healing, PCL was employed as wound-dressing material and delivery 

system for chemical antiseptic; PCL fibers were shown to exhibit desirable tensile properties 

following compounding with chlorhexidine diacetate while the antiseptic conferred antimicrobial 

properties, even at concentrations as low as 1% (w/w).207 Furthermore, PCL composites have 

been widely studied for applications in tissue engineering scaffolds that regenerate bone, 

ligament, cartilage, skin, nerve and vascular tissues.204 

 

1.2.5 Electrospinning 

In electrospinning, a polymer solution is ejected through a needle using an applied force 

from a syringe pump. An electric potential is applied to the needle through which the polymer 
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solution passes such that as each droplet accumulates at the tip of the needle, it experiences 

electrostatic repulsion between the surface charges of the droplet and Columbic force exerted by 

the applied electric field.208 As charge accumulates on the surface of the droplet, a Taylor cone is 

formed. Once the electrostatic charge exceeds the surface tension of the polymer solution, a 

polymer jet is expelled and travels towards a grounded mandrel.208 The solvent evaporates, 

leaving a porous, nonwoven fiber mat deposited on the collector. Electrospinning allows for 

customization of scaffold morphology by varying parameters known to affect fiber shape and 

size, for instance the concentration and resultant viscosity of the polymer solution, solvent 

identity, distance from needle to collecting surface, applied voltage, flow rate, temperature, and 

humidity.209,210 

Electrospun nanofibrous scaffolds have been proposed as a novel alternate strategy to 

conventional wound dressings for management of chronic skin wounds.211,212 Electrospinning 

polymer solutions can also be supplemented with bioactive agents to improve scaffold 

biocompatibility, biodegradability, biorecognition, sterilizability, and mechanical properties.213 

Due to the high surface-area-to-volume ratio, nanoscale diameter, and highly 

porous structure of electrospun fibers, even distribution and controlled release of bioactive 

molecules is possible.214 Immediate burst release with subsequent prolonged release of bioactive 

factors via passive diffusion occurs during degradation of polymer fibers.215 Antimicrobial 

peptides, cytokines, and growth factors, are absent in chronic wounds, but could be delivered 

exogenously using a biomolecule delivery system.216 For instance, electrospun polyvinyl alcohol 

(PVA)-silk nanofibers have previously been supplemented with EGF, bFGF, and the 

antimicrobial peptide LL-37. Biological gradients of these bioactive factors were established and 

tested using full-thickness excisional wounds on the dorsal surface of diabetic rabbits, 

demonstrating this combination of factors accelerated wound healing, lowered MMP expression, 

regulated ECM secretion, and reduced biofilm or bacterial colonization.217 

Several limitations of electrospun scaffolds have been identified however, including 1) 

the structure which is densely packed nanofibers, resulting in small pore sizes, 2) potential 

toxicity of residual solvents or cross-linking agents, and 3) difficulty with industrial 

upscaling.218–221 Small pore sizes and densely packed fibers result from the fabrication process 

where overlying layers compress underlying layers during electrospinning. As a result, cellular 

infiltration and ingrowth is inhibited, which in turn reduces vascularization and tissue 
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regeneration.222 Pore size can be increased however, by changing the polymer solution flow rate, 

increasing the concentration of the polymer solution to produce thicker fibers, or selective and 

controlled heating of the electrospinning environment to facilitate solvent evaporation. 214,223,224 

However, while thicker fibers can counteract the limitation of pore size, increasing fiber 

diameter inhibits cellular adhesion and migration.225 Moreover, the use of organic solvents or 

chemical cross-linking agents is a common concern associated with blended electrospinning due 

to cytotoxicity220. Safe crosslinking options include enzymatic crosslinking, electrostatic 

crosslinking, or hydrogen bonding with sugars or polyphenols.226 However, these alternative 

cross-linking methods are associated with more complicated fabrication procedures and 

excessive degradation of bioactive factors loaded into the scaffold for slow release.226 Lastly, the 

soluble nature of most biomolecules often results in rapid release from the nanofibrous scaffolds, 

as fast as 70% released within 30 minutes, followed by degradation or aggregation due to the 

instability of these proteins against proteolysis, acidity, and heat in the wound 

microenvironment.227–229 Despite these challenges, electrospinning is a viable biomaterials 

technique due to the great potential for customization of scaffold morphology and material 

composition. 

 Electrospun nanofibrous scaffolds can be produced using natural and synthetic 

polymers.230 Natural polymers such as collagen, gelatin, silk, fibrinogen and chitin are 

biocompatible, biodegradable and abundant in the natural environment. However, natural 

polymers exhibit fragile structural properties, complicated processability, vulnerability to 

enzymatic degradation and potential immunogenicity. Weak mechanical properties and rapid 

degradation of natural polymers are overcome using cross-linking to improve scaffold stability. 

Chemical crosslinkers such as glutaraldehyde, formaldehyde, polyether oxide, hexamethylene 

diisocyanate and polyurethane, acyl azide and carbodiimides, and glycerol, and physical 

crosslinkers including drying, heating, and UV/gamma radiation, covalently bond amino acids on 

adjacent scaffold structures. 

 Gelatin is a natural polymer alternative to collagen for use in electrospun biomaterial 

scaffolds.231 Gelatin, a derivative of collagen, is obtained by the denaturation of collagen in 

either acidic or basic processing. Type A gelatin is produced by acid pre-treatment of animal 

samples while type B gelatin is produced by alkaline pre-treatment.232 Gelatin maintains 

biocompatibility and biodegradability at much lower production costs than collagen.232 
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Moreover, gelatin scaffolds have been shown to stimulate cellular adhesion, migration and 

proliferation, and accelerate wound healing.233–235 

 

1.2.6 Stem Cell Therapy in Wound Healing 

Characteristics of stem cells (SCs) include the ability to self-renew, maintain long-term 

viability, and multipotent differentiation.236 SC therapies for the treatment of chronic wounds 

involves delivering adult stem and progenitor cells to the site of injury. Autologous SC transplant 

uses a person’s own SCs while an allogeneic transplant uses stem cells from a donor. In wound 

healing, exogenous progenitor and stem cells have been employed to improve healing and 

scarring outcomes through SC differentiation and secretory activities. For instance, transplanted 

human amniotic mesenchymal stem cells (AMMs) into a diabetic murine excisional skin wound 

showed that AMMs promoted wound healing and increased re-epithelialization and cellularity; 

AMMs demonstrated engraftment and expression of keratinocyte-specific proteins in vivo, while 

the secretome was rich in angiogenic factors IGF-1, EGF and IL-8.237 A clinical study of 

autologous bone marrow (BM)-derived MSC intramuscular injection into the affected limb of 24 

patients with non-healing ulcers demonstrated enhanced wound healing and improved clinical 

parameters such as painless walking.238 In a study of 41 type 2 diabetic patients with critical limb 

ischemia and foot ulcers, ulcer healing, limb perfusion, and painless walking were improved in 

groups injected intramuscularly with BM-MSCs compared to those that received BM-derived 

mononuclear cells or normal saline.239 Thus far, SC therapies for wound healing applications are 

limited to animal models and small clinical trials, but promising results warrant further 

investigation into the effective delivery of autologous and allogeneic stem and progenitor 

cells.240 

Adipose-derived stem/stromal cells (ASCs) are MSCs derived from fat tissue and have 

garnered interest in SC therapy. ASCs have been shown to proliferate rapidly and differentiate in 

vitro toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages.236,241,242 

Moreover, ASCs are resistant to mechanical damage243 and easily harvested from the body by 

mechanical liposuction, manual aspiration (Coleman technique), or direct surgical excision.244 

The stromal vascular fraction (SVF) derived from adipose tissue is heterogeneous, comprised of 

MSCs, pre-adipocytes, endothelial cells, pericytes, T cells, and alternative M2 macrophages.245 

MSCs can be purified from the SVF by plastic adherence and sorting based on expression of cell 
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surface markers including CD44, CD90, CD105, CD166, and Stro-1.246 Notably, ASC phenotype 

is controversial and under speculation; the International Federation for Adipose Therapeutics and 

Science and the International Society for Cellular Therapy include ASC positivity for CD13, CD 

36, CD73, and CD10, and negativity for CD45, CD31 and CD106.247 Despite the need for a 

distinct set of quality control criteria that can define the standard ASC phenotype, ASCs are a 

promising focus for cell therapy. 

In wound healing studies, ACSs injected locally into excisional wounds in diabetic rats 

with compromised healing abilities resulted in rescue of wound healing rates in diabetic rats 

almost equivalent to those of wild type rats.248 Moreover, ASCs appear to promote wound 

healing under ischemic conditions. Ischemia of rabbit ears was created by ligating two of three 

main arteries of the ear and subsequently wounding the ear; ASC therapy enhanced wound 

granulation in rabbit ears under ischemia.249 Radiation models of chronic wounds in rats and 

mice have demonstrated that ASCs administered directly into the irradiated region, 

intramuscularly into the irradiated limbs, or intravenously resulted in enhanced wound repair.250–

252 ASCs within the subcutaneous adipose tissue niche are in close proximity to cutaneous 

wounds and are implemented in the wound healing process.253 ASCs exhibit great migration 

potential and may infiltrate the wound to foster wound repair. For instance, ASCs transplanted 

into the subretinal space of injured rat retinas migrated into the retinal pigmented epithelium 

after 4 weeks.254 

ASCs are capable of affecting other cells through the release of hormones, cytokines, 

growth factors, and micro RNAs. Extracellular vesicles released by ASCs transport gene 

regulatory information that in turn affects angiogenesis, adipogenesis, and other cell pathways in 

recipient cells.255 Hormones released from ASCs have been shown to affect cancer cell 

proliferation.256 In diabetic rats, ASCs injected subcutaneously into full-thickness skin wounds 

stimulated angiogenesis and enhanced tissue regeneration after 8 weeks; ASCs amassed in the 

subdermal layer of the wound boundary and amplified angiogenesis via expression of von 

Willebrand factor and VEGF.257 Through co-culturing it was demonstrated that ASCs have an 

anti-inflammatory effect on monocyte-derived dendritic cells in vitro.258 Moreover, proliferation 

of lymphocytes was diminished following treatment with conditioned media from ASCs.259 In 

vivo, ASC-conditioned media applied topically to rodent wounds increased capillary density and 

wound closure kinetics.260,261 Together, these results implicate the ASC secretome in wound 
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healing processes, including tissue regeneration, angiogenesis, and inflammatory modulation, 

and are of significant interest for wound healing therapeutic strategies. 

 

1.3 Galectin-3 as a Therapeutic for Chronic Wounds 

1.3.1 Galectin-3 Overview 

 Galectin-3 is 250 amino acids in length, and is encoded by a single gene, LGALS3, 

located on chromosome 14.262 Galectin-3 is defined as a matricellular protein and is a member of 

the beta-galactoside-binding protein family. It has been shown to play important roles in cell-cell 

adhesion, cell-matrix interactions, macrophage activation, angiogenesis, metastasis, and cell 

apoptosis. Implicated in several inflammatory and immunomodulatory processes, galectin-3 is of 

interest for applications in chronic wound treatment. 

 

1.3.2 Roles in Inflammation 

 Galectin-3 can interact with a variety of inflammatory cell types including neutrophils, 

monocytes, and macrophages. Neutrophils, considered to be the first responders at the start of 

inflammation, eliminate foreign particles following injury. Treatment of neutrophils in vitro with 

recombinant human galectin-3 suggested that the matricellular protein was capable of activating 

neutrophils through its carbohydrate recognition domain.263 Similarly, in another study, galectin-

3 increased exudate neutrophil activity corresponding to increased surface-bound protein, while 

activity of peripheral neutrophils was unaltered.264 In addition to increasing neutrophil activity, 

galectin-3 has also been shown to facilitate neutrophil adhesion to laminin in vitro and has been 

implicated in the recruitment of neutrophils during in vivo murine cutaneous infection.265,266 

Inflammation is also mediated by migrating monocytes that differentiate into 

macrophages.267 Galectin-3 affects monocyte migration in vitro, stimulating chemotaxis at high 

concentrations and chemokinesis at lower concentrations. A similar migratory effect from 

galectin-3 is also observed in macrophages.268 Monocyte and macrophage migration is increased 

in the presence of fibronectin, indicating that galectin-3 may mediate linkage of these cells to the 

ECM protein.269 Macrophages are known to clear exhausted neutrophils from the wound by 

phagocytosis.267 Galectin-3 may influence this process given that addition of exogenous galectin-

3 increases apoptotic neutrophil uptake in macrophages in vitro. Moreover, it has been suggested 

that galectin-3 acts as an opsonin, physically linking phagocytic macrophages to neutrophils, 
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ensuring close proximity for easy ingestion of neutrophils.270 Regarding macrophage phenotype 

and activation phases, IFN-γ and LPS or TNF-α signals monocytes to undergo classical 

activation into M1-polarized macrophages, which are associated with inflammatory roles. M1 

macrophages produce inducible nitric oxide synthase (iNOS) as well as pro-inflammatory 

cytokines. In mice, markers of M1 macrophages include iNOS, chemokine ligand 9 (CXCL9), 

CXCL 10, and CXCL11. Monocytes can also undergo alternative activation through stimulation 

with IL-4 or IL-13 into M2-polarized macrophages. M2 macrophages are associated with tissue 

remodeling and secrete arginase I and anti-inflammatory cytokines. M2 markers in mice include 

arginase I, Mrc I, Fizz I, Ym1, and Ym 2.88,267,271 A study investigating the effect of galectin-3 

on macrophage activation in bone marrow-derived macrophages in vitro and in resident lung and 

recruited peritoneal macrophages in vivo demonstrated that macrophages derived from galectin-3 

deficient mice exhibited diminished IL-4/IL-13-induced M2 macrophage polarization, 

suggesting that galectin-3 is involved in the regulation of alternative macrophage activation.272 

 
1.3.3 Roles in Angiogenesis 

Galectin-3 has been shown to induce angiogenesis. Capillary tube formation of human 

umbilical cord endothelial cells grown on a matrigel was stimulated with galectin-3 

supplementation in vitro. In vivo, a galectin-3-loaded matrigel was able to induce 

angiogenesis in nude mice.273 Galectin-3 may modulate VEGF and FGF-2-mediated 

angiogenesis by activating focal adhesion kinase-mediated signaling pathways which control 

endothelial cell migration.274 The protein has also been implemented in angiogenesis and 

endothelial cell migration through integrin-linked kinase signaling.275 Galectin-3 binds vascular 

endothelial growth factor receptor 2 (VEGFR2), promoting its phosphorylation and preventing 

its internalization, thus increasing angiogenic processes of human umbilical cord endothelial 

cells in vitro.276 Similarly, galectin-3, together with galectin-1, can activate and prevent the 

internalization of VEGFR1, to again enhance angiogenesis.276 However, despite these findings, a 

study of murine cutaneous wound repair from our research group demonstrated that galectin-3 

deficient mice exhibited no difference in vascular density or expression of angiogenic markers 

relative to wild-type mice.277 
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1.3.4 Roles in Re-Epithelialization 

Surface expression of galectin-3 in type I and II alveolar epithelial cells was described in 

a model of irradiation-induced lung inflammation and repair.278 In corneal healing, re-

epithelialization was reduced in galectin-3 deficient mice compared to wild-type counterparts.279 

While galectin-3 did not alter the rate of epithelial cell proliferation, the protein may have 

influenced epithelial cell migration as elevated levels of galectin-3 were detected in the 

migrating epithelial tongue following injury.279 This influence was also seen in human corneal 

epithelial cells where galectin-3 promoted cell scattering, lamellipodia formation, and motility.280 

Notably, in murine corneal healing the addition of exogenous galectin-3 increased re-

epithelialization in wild type (WT) mice, but not galectin-3 deficient mice.279 Epithelial wounds 

in monkey corneal explants also exhibited enhanced re-epithelization following human galectin-

3 exogenous treatment.281 

Cutaneous wound healing models have demonstrated that keratinocytes from galectin-3 

knockout mice exhibit a migratory defect, and that re-epithelialization, but not wound closure 

itself, is delayed in galectin-3 deficient mice.277,282 Overall, galectin-3 has been implicated in 

numerous wound healing processes including inflammation and contributing to re-

epithelialization. As a result, topical delivery of this protein during the wound healing process is 

of interest to augment repair in challenged wound healing environments. 

 

1.4 Hypothesis and Objectives 

1.4.1 Rationale 

 Pathologies such as cutaneous chronic wounds are a challenge to treat clinically and new 

treatment strategies are desperately needed. Excessive inflammation, a deficient ECM structure 

and composition, cell senescence, and imbalance of signaling molecules contribute to a non-

healing wound bed that persists beyond three months, leading to pain, impaired limb function, 

bacterial infection, and hospitalization. High mortality rates following lower limb amputation, 

necessitated by chronic wounds, indicate a severe need for a bioengineered scaffold that can 

resolve inflammation and serve as a temporary support for fibroplasia, neoangiogenesis, and re-

epithelialization. 

A three-dimensional scaffold more closely mimics the structure and function of native 

ECM and can be used in the delivery of bioactive molecules. The scaffold provides a site for cell 
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biorecognition and adhesion, necessary for cell infiltration and proliferation. Electrospinning and 

3D printing are two means of biomimetic scaffold production. Electrospun scaffolds are highly 

nanofibrous and randomly organized, while 3D printed scaffolds allow for controlled material 

architecture and void pores. 

Three-dimensional printing has gained interest in biomaterial engineering as an 

accessible means of scaffold fabrication with the opportunity for customized scaffold shape and 

porosity. Thus, our laboratory is interested in establishing a protocol for reproducible printing of 

soft materials which can be investigated for use in tissue engineering applications. 

Electrospinning nanofibrous scaffolds is well-established in our laboratory.283,284 We 

have previously demonstrated that electrospun gelatin/galectin-3 scaffolds are biocompatible in 

vitro. The conditions under which galectin-3 might attenuate prolonged inflammation by 

modulating alternative M2 macrophage polarization remains to be elucidated. 

 
1.4.2 Hypothesis 

 I hypothesize that scaffold design considerations will depend on their intended 

application. Firstly, I predict that 3D printed soft collagen scaffolds and rigid PCL scaffolds will 

exhibit desired architecture, porosity, and biocompatibility; these engineered scaffolds will 

support human adipose-derived stem/stromal cell (ASC) bioactivity in vitro. Secondly, I predict 

that local delivery of human recombinant galectin-3, either topically or using a gelatin scaffold, 

in a murine model of wound healing will cause the enrichment of pro-regenerative, arginase I-

positive cells within the wound in vivo. 

 
1.4.3 Objectives 

The aims of this study were to investigate 3D printed and electrospun scaffolds for tissue 

engineering. Electrospun scaffolds are composed of nanofibers that are randomly organized, 

while 3D printed scaffolds allow for controlled deposition of print materials to ensure desired 

material architecture and void pores. 

 

Aim 1: Three-Dimensional Bioprinting for Tissue Engineering 

 - Establish a protocol for soft collagen scaffold printing 

 - Polycaprolactone scaffold polymer fusion printing 

 - In vitro proof-of-concept scaffold performance and ASC phenotype analysis 



www.manaraa.com

 
 

30 

 

Aim 2: Effects of Exogenous Galectin-3 in a Murine Wound Healing Model 

 - Electrospin galectin-3-loaded gelatin scaffolds 

 - Evaluate effects of exogenous galectin-3 in vivo 
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2 Design and Validation of 3D Printed Scaffolds for Adipose 

Derived Stromal Cell Tissue Engineering 

2.1 Introduction 
Skin, the largest organ of the human body, is responsible for providing barrier protection 

as well as receiving sensation input from the external environment, and finally is responsible for 

thermal regulation of the body. Structurally, skin is comprised of three major layers, the 

epidermis, dermis and subcutaneous hypodermis.1 Interestingly, the skin surface is not smooth 

but is laced with multiple networks of fine grooves called sulci cutis, which can be either deep or 

shallow. The slightly elevated areas that are surrounded by shallower areas of sulci cutis are 

called cristae cutis.2 Sweat pores fed by the sweat glands open to the cristae cutis. The 

orientation of the sulci cutis, which differs depending on body location, is called the dermal ridge 

pattern. For instance, fingerprints and patterns on the palms of your hand and soles of your feet 

are formed by the sulci cutis. In addition, at the extracellular matrix level, skin contains 

significant topographical features; such biological topography provides important physical cues 

for oriented migration (contact guidance), cell orientation, spreading, contractility, migration and 

signaling. 

 Skin contains numerous stem and progenitor cell populations, which are self-renewing as 

skin constantly replaces itself following desquamation, the shedding of the outermost layer of 

skin. Non-pathologic desquamation of the skin occurs approximately every two weeks, when 

keratinocytes are individually shed unnoticeably.3 Humans keratinocytes turn over from stem 

cells to desquamation every 40-56 days,4 whereas in mice the estimated turnover time is much 

faster, 8-10 days.5 The continual regeneration of skin is maintained by permanently residing stem 

cells that sustain principal differentiated epidermal lineages, the interfollicular epidermis (IFE), 

sebaceous gland (SG), hair follicle (HF),6,7 and Merkel cell mechanoreceptors.8 Through 

radiation dose-survival studies, it was suggested that stem cells comprise about 2-7% of basal 

layer cells9 while another study of murine basal layer cells suggested a larger stem cell 

population, 10-12% of cells in the basal layer.10 Maintenance of skin homeostasis is dependent 

on the ability of stem cells to replenish the turnover of mature epithelial lineages. 

 Stem cell-based therapies employs the regenerative nature of stem and progenitor cells to 

treat disease or pathological conditions. In regenerative medicine, stem cells can be removed 
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from their natural environment, expanded to increase the population, and finally, implanted into 

a pathological tissue environment with or without a delivery scaffold. How stem and progenitor 

cells interact with their native microenvironment (stem cell niche), to establish and maintain their 

properties is crucial to tissue engineering applications particularly when the microenvironment is 

pathological in nature.11 Of interest in tissue engineering is the cell population of adipose-derived 

stem/stromal cells (ASCs). ASCs have been shown to proliferate rapidly and differentiate in vitro 

towards adipogenic, osteogenic, chondrogenic and myogenic lineages.12,13 ACSs are found in the 

stromal vascular fraction along with pre-adipocytes, endothelial cells, pericytes, T cells, and 

alternative M2 macrophages.14 Following harvesting from the body by mechanical liposuction, 

manual aspiration, or surgical excision, enzymatic procedures, culture expansion with plastic 

adherence, and sorting using immunomagnetic beads coated with specific antibodies can be 

employed to isolate ASCs from contaminating cell types.15 ASCs have been implicated in tissue 

regeneration processes though their differentiation potential and secretion of bioactive molecules 

which signal and influence bioactivity of surrounding cells.16–21 

A biomaterial for stem cell culture and delivery should provide biomimetic physical and 

chemical cues. Collagen type I composes 90% of the total collagen content in the skin, 

conferring compressive and tensile strength. Current approaches to the assembly of three-

dimensional (3D) biomaterials use additive manufacturing (3D printing) to deposit materials 

layer by layer for controlled structure and architecture. Printing of biological hydrogels include 

syringe-based extrusion,22,23 printing with fibrin,24,25 gelatin,26 and protein mixtures obtained 

from decellularized tissues.27 However, 3D printed biological hydrogels and proteins must gel in 

situ in order to prevent their collapse or shape deformation; moreover the structural integrity of 

printed scaffolds remains to be studied in vivo.28–30 Direct printing into a secondary hydrogel that 

acts as a temporary support bath is of interest to preserve 3D printed architectures of soft 

biomaterials.31,32 In this study, 3D printed scaffolds are employed to assess in vitro ASC 

bioactivity and phenotype. 

 

2.2 Materials and Methods 

2.2.1 Preparation of Gelatin Support Slurry 

A gelatin microparticle support slurry was adapted from Hinton et al.31 The preparation 

protocol is summarized in Figure 2.1. A 100 mL volume of 4% (w/v) type A 275 bloom porcine 
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gelatin powder (Advanced Biomatrix, San Diego, CA, USA) hydrate in 1X phosphate buffered 

solution (PBS) pre-heated to 45°C was prepared in a glass 500 mL mason jar (Ball Inc., 

Broomfield, CO, USA). The solution was mixed until gelatin had fully dissolved and then stored 

overnight at 4°C to produce a semi-rigid gelatin colloid. The following day, 100 mL of 1X PBS 

chilled to 4°C was transferred to the jar and a rubber spatula was used to gently dislodge the 

gelatin. The jar was overflowed with 4°C 1X PBS and a rubber sealing ring, Osterizerâ Ice 

Crusher Blade (Sunbeam Products, Inc., Boca Raton, FL, USA), and threaded bottom cap were 

twisted onto the jar rim. The sealed jar was placed at -20°C until ice crystals began to form 

between the colloid and fluid layers, approximately 45 min. Immediately following removal 

from the -20°C freezer, the jar was inverted onto an Osterizerâ Heritage Blend 400 (Sunbeam 

Products, Inc., Boca Raton, FL, USA) consumer-grade blender and the gelatin was blended to 

mechanically disrupt the gel for 60, 90, or 120 s. The gelatin slurry was placed on ice and 

aliquoted into 50 mL conical centrifuge tubes, also placed in ice. The slurry was centrifuged at 

4000xg and 4°C for 5 min to separate the supernatant, composed of excess PBS and soluble 

gelatin, from the gelatin microparticle layer. The supernatant was poured off and 10 mL of 4°C 

1X PBS was added to each conical centrifuge tube; all tubes were kept on ice to prevent the 

gelatin from melting. The slurry was vortexed briefly to resuspend the gelatin, and centrifugation 

followed by resuspension in fresh 1X PBS was repeated three more times. Once the supernatant 

had been completely cleared from the gelatin microparticle layer, 10 mL of fresh 4°C 1X PBS 

was added to each tube, tubes were vortexed, and stored in a 4°C fridge. To prepare the gelatin 

support slurry for use, it was recovered from the fridge, vortexed, then centrifuged at 4000xg and 

4°C for 5 min. The supernatant was poured off and the slurry was scooped into a sterile 60 x 15 

mm round polystyrene dish (Corning Inc. Life Sciences, Durham, NC, USA) using a metal 

spatula to prevent air bubble formation within the support slurry. The slurry surface was 

smoothed using a metal spatula and two light-duty tissues (VWR International, LLC, Radnor, 

PA, USA) were placed on top of the slurry to absorb residual liquid. 

 

2.2.2 Gelatin Support Slurry Rheology 

 Gelatin slurries were prepared as described above and rheological properties of slurries 

blended for 60, 90, or 120 s (N=2, n=3) were measured. Approximately 5 cc of slurry was loaded 
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onto a Modular Compact Rheometer (MCR) 302 (Anton Paar GmbH, Graz, Austria) equipped 

with a 50 mm parallel plate measuring system equipped with a moisture trap to prevent samples 

from drying out. Samples were pre-sheared at 10 Hz for 5 min then subject to a 10 min wait 

period. Viscoelasticity was analyzed by frequency sweep from 0.1 to 100 rad/s at 1 mm 

separation and 3% strain. A second wait period was observed for 10 min. Viscosity was analyzed 

by controlled shear rate (CSR) flow testing from 0.01 to 30 Hz. The MCR 302 was held at 23°C 

for the duration of all rheological measurements as to accurately reflect the ambient temperature 

during 3D printing. 

 

2.2.3 Gelatin Support Slurry Microparticle Morphology 

 To study gelatin microparticle morphology, support slurries were blended for 60, 90, or 

120 s (N=2). Gelatin slurries were recovered from 4°C, vortexed, and diluted 1:4 in 4°C Immu-

Mount mounting medium (Thermo Fisher Scientific, Waltham, MA, USA) containing 2.5% (v/v) 

blue dye (McCormick & Co., Inc., London, ON, Canada). Samples were mounted on a coverslip 

and imaged using a Nikon SMZ 1500 stereomicroscope (Nikon Instruments Inc, Melville, NY, 

USA) and CoolSNAP cf camera (Teledyne Photometrics, Tucson, AZ, USA). ImageJ software 

(National Institutes of Health, Bethesda, MD, USA) was employed to convert each image to 8-

bit greyscale and adjust brightness, contrast, and thresholding. Particles were counted and 

analyzed, and the effect of blend time on gelatin microparticle area, perimeter, Feret diameter, 

and circularity was measured (n=250). 

 

2.2.4 Scaffold Computer-Aided Design 

 Collagen scaffolds were designed using SolidWorks modeling program (Dassault 

Systèmes, Vélizy-Villacoublay, France) to generate a 10 x 10 x 0.5 mm rectangular prism 

stereolithography (STL) file. The 10 x 10 x 0.5 mm STL was uploaded in quadruplicate to Slic3r 

(open source GNU AGPL license) for Gcode generation. STLs were sliced using either a 

rectilinear or hexagonal/honeycomb infill pattern at 20% infill density. 

 Polycaprolactone (PCL) scaffolds were designed using Simplify3D (Cincinnati, Ohio, 

USA) slicing software. A 50 x 50 x 2 mm rectangular prism stereolithography (STL) file was 

sliced with a 50% density, rectilinear infill pattern. 
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2.2.5 Printing of Porous Collagen Scaffolds 

 A r3bEL mini bioprinter (SE3D, Santa Clara, CA, USA) was plugged into a 12V DC 

power adaptor and controlled using Pronterface free open-source software (Printrun software 

licensed under the GNU General Public License, version 3). Porous collagen scaffolds were 

printed using freeform reversible embedding as described by Hinton et al.31 Lifeink® 200 

collagen bioink (Advanced Biomatrix) consisting of 35 mg/mL pH neutral type I collagen 

purified from bovine hide with physiological salt concentration, was loaded into a 5 mL syringe 

and centrifuged at 100xg and 4°C for 1 min. Any air collected at the top of the syringe was 

expelled, and the syringe was fitted with a stainless steel 30G blunt luer stub to serve as the 

printing nozzle. The syringe was manually primed until collagen ink filled the nozzle, then 

mounted into the syringe pump extruder of the bioprinter. A 60 x 15 mm round polystyrene dish 

containing gelatin microparticle support slurry prepared as described in section 2.2.1 was 

positioned on the bioprinter bed and secured with vinyl-coated laboratory tape (VWR) to prevent 

slippage during movement of the print bed. The nozzle tip was positioned at the center of the 

support bath in x and y dimensions, and approximately 2 mm from the bottom of the bath in the z 

(lateral) direction. G-code instructions were immediately initiated to avoid clogging the nozzle. 

All printing was completed at ambient temperatures (~23°C) over a period of 30 min and unused 

collagen ink was stored in the sealed syringe at 4°C immediately after printing. The polystyrene 

dish containing porous collagen scaffolds embedded within the gelatin support slurry was 

incubated at 37°C for 2 hr to melt the gelatin. Liquified gelatin was aspirated, and liberated 

collagen scaffolds were washed three times with PBS. 

 

2.2.6 Printing of Porous Polycaprolactone Scaffolds 

 Low temperature polycaprolactone (PCL) 3D Filament (eSUN eMate, Shenzhen Esun 

Industrial Co., Ltd., Shenzhen, China) was fed into a F400-S (Fusion 3, Greensboro, NC, USA) 

operated using Duet Web Control (Creative Commons CC BY-SA 3.0 license). A 0.4 mm 

extrusion nozzle was heated to 90°C and the print bed to 30°C before execution of Gcode. Upon 

completion of printing, 6 mm diameter circular samples were cut using a biopsy punch (Integra 

Miltex, York, PA, USA) and functionalized using argon plasma treatment. 
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2.2.7 3D Printed Scaffold Morphology 

 Collagen and polycaprolactone scaffolds were prepared as described in sections 2.2.5 and 

2.2.6 then imaged by digital camera and Nikon SMZ 1500 stereomicroscope to demonstrate 

scaffold architectures. 

 

2.2.8 Collagen Scaffold Hydrophilicity 

 3D printed porous collagen scaffolds (N=4) were imaged using a Nikon SMZ 1500 

stereomicroscope following printing, then incubated at 37°C in PBS for 14 days. Scaffolds were 

imaged again, and inner strut dimensions (n=45) were analyzed using ImageJ software to 

quantify the degree of swelling. 

 

2.2.9 Cell Isolation and Culture 

Human Research Ethics Board approval for this study was obtained from Western 

University (Appendix G). Subcutaneous adipose tissue samples were collected with informed 

consent a 67-year-old female undergoing lower limb amputation procedures at the London 

Health Sciences Centre (London, ON, Canada). Tissue samples were transported to the lab on ice 

in sterile, cation-free Dulbecco’s phosphate buffered saline (DPBS; Sigma) supplemented with 

20 mg/mL bovine serum albumin (BSA) and processed within 2 hr for adipose‐derived 

stem/stromal cell (ASC) isolation. Adipose tissue was washed with PBS by shaking, then treated 

with a digestion solution consisting of 0.1% (w/v) collagenase type 1, 1% (w/v) CaCl2, and 1% 

(w/v) BSA. Fat tissue was minced and incubated for 1 hr at 37°C. The sample was centrifuged 

for 5 min at 420xg and the liquid supernatant was aspirated off. The cellular pellet was 

resuspended in proliferation medium comprised of DMEM supplemented with 10% (v/v) fetal 

bovine serum (FBS; Thermo Fisher Scientific), and 3% (v/v) antibiotic-antimycotic (Life 

Technologies Inc., Burlington, ON, Canada) and cultured on tissue culture polystyrene (TCPS; 

Corning, New York) at 37°C (20% O2 and 5% CO2). After 24 hr, the media was replaced and 

adherent cells were expanded further. The culture medium was replaced every 3 days and cells 

were cryopreserved in freezing medium comprised of 80% FBS, 10% Dulbecco’s Modified 

Eagle Medium (DMEM) and 10% dimethyl sulfoxide (DMSO) at passage one. ASCs were 

thawed and propagated on TCPS with 3rd passage cells used for all studies. 
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2.2.10 In Vitro Proliferation Assay 

 Collagen scaffolds in two architectures, rectilinear and hexagonal, and rectilinear PCL 

scaffolds were placed in a 24-well culture plate and ultraviolet (UV) treated for 2 hr. P3 ASCs 

were seeded onto each scaffold at 80,000 cells per well and cultured in proliferation medium 

comprised of DMEM supplemented with 10% (v/v) FBS and 3% (v/v) antibiotic-antimycotic 

(37°C, 20% O2 and 5% CO2). Cells were also seeded onto TCPS as a control. After 24 hr 

culturing on scaffolds, cells were stained using the iFluor 488 EdU proliferation assay 

(ab219801, Abcam). Cells were incubated with 40 μM EdU for 2 hr then fixed in 4% 

paraformaldehyde for 15 min at room temperature. Samples underwent two washes with PBS 

containing 3% BSA before permeabilization for 20 min. Samples were washed twice and 

incubated with a reaction mixture composed of 1:420 iFluor 488 azide, 20 mg/mL sodium 

ascorbate and 4 mM copper sulfate in 1X Tris-buffered saline (TBS). The reaction mixture was 

prepared fresh and used within 15 min of preparation. Samples were rocked to ensure even 

distribution of the reaction mixture, then incubated at room temperature for 30 min protected 

from light. Samples were washed once with PBS containing 3% BSA, then again in fresh PBS. 

Samples were then incubated with Hoechst 33342 (Trihydrochloride Trihydrate; Thermo Fisher 

Scientific) or propidium iodide (PI) at a dilution of 1:1000 for 1 hr at room temperature and 

subsequently washed with PBS three times. TCPS controls were imaged using an Axio Observer 

Z1 fluorescence microscope (Carl Zeiss) and 491/520 nm excitation/emission. Collagen and PCL 

scaffolds were imaged using z-stack acquisition on an LSM 800 confocal microscope (Zeiss). 

Images for each sample (n=10) were taken at 10X magnification and used to calculate the 

fraction of EdU-positive cells. 

 

2.2.11 In Vitro Cytoskeleton Morphology 

 Collagen scaffolds in two architectures, rectilinear and hexagonal, and rectilinear PCL 

scaffolds were placed in a 24-well culture plate and UV treated for 2 hr. P3 ASCs were seeded 

onto each scaffold at 80,000 cells per well and cultured in proliferation medium comprised of 

DMEM supplemented with 10% (v/v) FBS and 3% (v/v) antibiotic-antimycotic (37°C, 20% O2 

and 5% CO2). Cells were also seeded onto TCPS as a control. TGF-b1 (R&D Systems, 

Minneapolis, MN, USA) or bovine serum albumin (BSA) were added to the proliferation media 

at 10 ng/mL. After either 3 days or 14 days of culturing on scaffolds, cells were washed three 
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times with PBS, then fixed for 10 min in 4% paraformaldehyde at room temperature. Samples 

underwent three PBS washes then were permeabilized using 0.1% Triton X-100 for 5 min. 

Washes were repeated and cells were incubated with 10% horse serum for 30 min to block non-

specific antibodies. Samples were incubated overnight at 4°C with a vinculin primary antibody 

(MAB3574, Millipore) at 1:1000 in 1% horse serum. The next day, samples were washed and 

incubated with 1:1000 Alexa Fluor 488 (Abcam), 1:1000 Hoechst 33342, and 1X rhodamine-

conjugated phalloidin (ab235138, Abcam) for 1 hr at room temperature, protected from light. 

Samples were washed with PBS three times to remove unbound antibodies. TCPS controls were 

imaged using an Axio Observer Z1 fluorescence microscope (Carl Zeiss) and collagen and PCL 

scaffolds were imaged using z-stack acquisition on an LSM 800 confocal microscope (Zeiss). 

Images for each sample (n=10) were taken at 10X magnification. 

 

2.2.12 In Vitro Fibronectin Detection 

 Collagen scaffolds in two architectures, rectilinear and hexagonal, and rectilinear PCL 

scaffolds were placed in a 24-well culture plate and UV treated for 2 hr (N=3). P3 ASCs were 

seeded onto each scaffold at 80,000 cells per well and cultured in proliferation medium 

comprised of DMEM supplemented with 10% (v/v) FBS and 3% (v/v) antibiotic-antimycotic 

(37°C, 20% O2 and 5% CO2). Cells were also seeded onto TCPS as a control. Transforming 

growth factor beta 1 (TGF-b1) or bovine serum albumin (BSA) were added to the proliferation 

media at 10 ng/mL. After either 3 or 14 days of culturing on scaffolds, samples were treated 

using the immunofluorescent protocol described in section 2.2.11. A fibronectin primary 

antibody (sc 8422, Santa Cruz Biotechnology) was employed at 1:1000; the next day, samples 

were incubated with 1:1000 Alexa Fluor 488 (Abcam), 1:1000 Hoechst 33342, and 1X 

rhodamine-conjugated phalloidin. TCPS controls were imaged using an Axio Observer Z1 

fluorescence microscope (Carl Zeiss) and collagen and PCL scaffolds were imaged using z-stack 

acquisition on an LSM 800 confocal microscope (Zeiss). Images for each sample (n=10) were 

taken at 10X magnification. 

 

2.2.13 In Vitro Phenotype Study 

 Collagen scaffolds in two architectures, rectilinear and hexagonal, and rectilinear PCL 

scaffolds were placed in a 24-well culture plate and UV treated for 2 hr (N=3). P3 ASCs were 
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seeded onto each scaffold at 50,000 cells per well and cultured in either proliferation medium, 

osteogenic differentiation medium, or adipogenic differentiation medium. Cells were also seeded 

onto TCPS as a control. The proliferation medium was comprised of DMEM supplemented with 

10% (v/v) FBS and 3% (v/v) antibiotic-antimycotic (37°C, 20% O2 and 5% CO2). Osteogenic 

differentiation medium, used to induce osteogenic lineage, was comprised of proliferative 

medium supplemented with 10 mM b-glycerophosphate and 50 μg/mL ascorbate 2-phosphate.33 

Adipogenic differentiation medium was comprised of serum-free DMEM media supplemented 

with 3% antibiotic-antimycotic, 33 μM biotin (vitamin B₇), 17 μM pantothenic acid (vitamin B₅), 

66 nM insulin, 1 nM triiodothyronine (T3), and 10 μg/mL transferrin.20,34 For the first 3 days of 

culture, 1μg/mL of troglitazone and 0.25 mM isobutylmethylxanthine (IBMX) were also 

included in the adipogenic media.20,34 After 21 days of culturing on scaffolds, samples were 

treated using the immunofluorescent protocol described previously. Primary detection antibodies 

for runt-related transcription factor 2 (RUNX2; EPR14334, abcam) and peroxisome proliferator-

activated receptor gamma (PPARγ; A3409A, R&D Systems) were employed at 1:1000 and 

1:400, respectively. Samples were subsequently incubated with Alexa Fluor 488 goat a mouse, 

Alexa Fluor 647 donkey a rabbit (Abcam), and Hoechst 33342, each at 1:1000 dilution. TCPS 

controls were imaged using an Axio Observer Z1 fluorescence microscope (Carl Zeiss) and 

collagen and PCL scaffolds were imaged using z-stack acquisition on an LSM 800 confocal 

microscope (Zeiss). Images for each sample (n=10) were taken at 10X magnification. 
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Figure 2.1. Preparation of the Sacrificial Support Slurry. A gelatin microparticle slurry was 
employed as a secondary, thermo-reversible support medium for 3D printing of collagen. 
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2.3 Results 

2.3.1 Preparation of 3D Printed Scaffolds 

 To manufacture collagen scaffolds for human ASC culturing, collagen bioink was printed 

by positive-displacement ejection from a syringe. Collagen bioink printed directly onto TCPS 

resulted in material flowing out of the deposited architecture (Figure 2.1). Moreover, following 

gelation, printed scaffolds adhered to the TCPS surface and could not be lifted off without 

further collapse of the scaffold shape. Collagen bioink was too viscous to direct print, thus 

reverse embedded printing was considered. Suspension of printed materials within a secondary, 

sacrificial material in order to preserve the desired print architecture and allow for easy scaffold 

liberation. 

 A gelatin microparticle slurry was adapted with modification from Hinton et al.31,32 and 

employed as a secondary, thermo-reversible support medium for 3D printing of collagen. Gelatin 

in PBS was mechanically blended for 60, 90, or 120 s to fabricate a temperature-sensitive 

microparticle slurry (Figure 2.2). Following centrifugation of blended particles, a white raft of 

soluble gelatin was apparent in all samples. Soluble gelatin was removed from all samples by 

repeated washes with cold PBS. Longer blend durations resulted in notably greater soluble 

gelatin content, indicative of gelatin melting during the longer period off ice. At 4°C the slurry 

remained a solid-like gel, however incubation at 37°C completely melted the gelatin to a liquid. 

Thus, materials embedded within the gelatin slurry could be easily removed by melting the 

gelatin. Gelatin slurries blended for 60, 90, or 120 s were subject to rheological testing to study 

deformation and flow (Figure 2.3). Independent of blend duration, all samples behave as a 

Bingham plastic fluid and displayed comparable viscoelasticity and viscosity (p>0.05). At low 

stress, the slurry behaved as a solid, while at high stress it flowed as a viscous fluid. For all 

samples, the measured storage moduli (G’) was greater than the loss moduli (G” or E”), 

indicating that the gelatin slurry displayed more dominant gel-like structure than fluid-like. 

Supplementary rheological data is shown in Appendix A. 

The effect of blend duration on gelatin microparticle morphology was investigated by 

blending gelatin samples for 60, 90, or 120 s, then observing suspended particles under a 

stereomicroscope (Figure 2.4). The mean particle area for slurries blended for 60, 90, or 120 s 

were 0.30 ± 0.12 mm2, 0.14 ± 0.03 mm2, and 0.04 ± 0.01 mm2, respectively. Significant 

differences in the particle area (p<0.05), perimeter (p<0.01) and Feret diameter (p<0.01) were 
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observed between 60 s blended samples and 120 s blended samples. No significant differences 

involved the 90 s blended samples. All samples generated particles of comparable circularity, 

with reported index values of 0.74 ± 0.03, 0.72 ± 0.02, and 0.71 ± 0.03 for 60, 90, or 120 s 

blends (where 1.0 circularity index represents a perfect circle). Given that smaller particles 

would displace with higher resolution, 120 s blending was employed for all future embedded 

printing experiments. 

For embedded printing of collagen bioinks, a 10 x 10 x 0.5 mm rectilinear prism STL was 

uploaded in quadruplicate to Slic3r for G-code generation (Figure 2.5). STLs were sliced using 

either a rectilinear or hexagonal (honeycomb) infill pattern at 20% infill density. A summary of 

early embedded printing attempts can be found in Appendix C. Rectilinear pores measured 

approximately 1 mm in diameter and exhibited interior angles of 90°. Hexagonal pores also 

measured approximately 1 mm in diameter and exhibited interior angles of 120°. The degree of 

scaffold swelling was assessed after two-week incubation in PBS at 37°C (Figure 2.6). Both 

infill patterns exhibited hydrophilicity, however while the hexagonal scaffold swelling was 

minimal enough to be considered not significant (p>0.05), rectilinear swelling was significant 

(p<0.001).  This difference was likely a result of hexagonal struts being larger than their 

rectilinear counterparts, thus already containing free regions for water molecule infiltration, 

rather than being a difference in bioink hydrophilicity, since both architectures were printed 

using the same high concentration collagen type I bioink. 

Polycaprolactone (PCL) scaffolds were printed using low temperature (90°C) polymer 

fusion printing.  A 50 x 50 x 2 mm Rectangular prism CAD was sliced using rectilinear 50% 

density infill pattern from which 6 mm diameter circular samples were cut. The printed PCL 

construct displaced a rectilinear architecture with 90° interior angles where struts met, and struts 

approximately 0.4 mm in thickness.
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Figure 2.2. Justification for Reverse Embedded Printing. Collagen bioink printed directly 

onto TCPS resulted in collapse of the scaffold architecture.  
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Figure 2.3. Rheological Properties of the Gelatin Support Slurry. Gelatin slurries prepared 

by blending for 60, 90, or 120 s were subject to viscoelasticity and viscosity testing. A) Storage 

(G’), loss (G”) and complex viscosity (|η*|) as a function of sweeping oscillatory angular 

frequency. B) Shear stress (𝜏) as a function of controlled shear rate (rotational speed) C) 

Viscosity (𝜂) as a function of rotational shear rate. N=2, n=3, Two Way ANOVA, p>0.05. All 

data is represented as mean. 



www.manaraa.com

 62 

 

 

1

10

100

1000

10000

0.1 1 10 100

Dy
na

m
ic

 M
od

ul
i (

Pa
)

Angular Frequency (rad/s)

G' t=60

G' t=90

G' t=120

G" t=60

G" t=90

G" t=120

|η*| t=60

|η*| t=90

|η*| t=120

1

10

100

1000

0.01 0.1 1 10 100

Sh
ea

r S
tr

es
s (

Pa
)

Shear Rate (1/s)

𝜏 t=60

𝜏 t=90

𝜏 t=120

1

10

100

1,000

10,000

100,000

0.01 0.1 1 10 100

Vi
sc

os
ity

 (P
a·

s)

Shear Rate (1/s)

𝜂 t=60

𝜂 t=90

𝜂 t=120

A 

B 

C 



www.manaraa.com

 63 

Figure 2.4. Effect of Blend Duration on Gelatin Microparticle Morphology. A) 

Representative stereomicroscopic images of gelatin particles. B) Particle area, perimeter, Feret 

Diameter and circularity as a function of blend time. N=2, n=250, Two Way ANOVA with 

Tukey test, **p<0.01, *p<0.05. All data is represented as mean ± SEM. 
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Figure 2.5. Collagen Scaffold Computer-Aided Design. A 10 x 10 x 0.5 mm rectilinear prism 

STL was uploaded in quadruplicate to Slic3r for G-code generation. STLs were sliced using 

either a rectilinear or hexagonal infill pattern at 20% infill density. 
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Figure 2.6. Porous Collagen Scaffold Morphology. A) Scaffolds were successfully embedded 

within a gelatin support slurry and subsequently liberated. B) Scaffold swelling was assessed 2 

weeks post-printing. N=4, Student’s test, ***p<0.001, ns=not significant at p>0.05. All data is 

represented as mean ± SEM. 
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Figure 2.7. Polycaprolactone (PCL) Scaffold Morphology. A 50 x 50 x 2 mm Rectangular 

prism CAD was sliced using rectilinear 50% density infill pattern from which 6 mm diameter 

circular samples were cut. A) Digital photograph of the printed PCL construct. B) 

Stereomicroscopic image of the printed PCL showing scaffold architecture. 
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2.3.2 In Vitro Validation of 3D Printed Scaffolds as a Support for ASC Cell Growth 

 Three-dimensional printed scaffolds were assessed using human adipose-derived 

stem/stromal cells (ASCs) isolated from subcutaneous adipose tissue obtained from a female 

aged 67. In all studies, PCL rectilinear and collagen rectilinear and hexagonal 3D printed 

scaffolds were used. 

 Collagen and PCL scaffolds were first assessed using the EdU proliferation assay (Figure 

2.8). Hoechst was used to counterstain DNA on TCPS and collagen scaffolds, while propidium 

iodide (PI) was used for PCL samples since this material auto fluoresces at 450 nm (Appendix 

D). ASCs seeded onto PCL scaffolds were over 90% EdU positive, and this difference was 

statistically significant when compared to collagen scaffolds of either architecture previously 

described, rectilinear or hexagonal (p<0.01). While approximately 10% of cells seeded onto 

rectilinear or hexagonal collagen scaffolds were proliferating, it was significantly less than the 

control TCPS group (p<0.01). ASC proliferation on PCL scaffolds compared to those cultured 

on TCPS was not significant (p>0.05), likely as a result of low cell numbers present on PCL 

scaffolds themselves. Together, these results confirm that human ASCs are capable of 

proliferation, especially on a PCL scaffold. 

 ASC cytoskeletal morphology was assessed three days post-cell seeding on scaffolds and 

with media supplemented with transforming growth factor beta 1 (TGF- β1) or bovine serum 

albumin (BSA) as a control (Figure 2.9). TGF-β1 is a secreted cytokine that influences many 

cellular functions, including the control of cell growth, cell proliferation, cell differentiation, 

and apoptosis. The actin cytoskeleton was visualized as well as vinculin, a membrane-

cytoskeletal linker protein. Qualitatively, TGF-β1 increased cell density and spreading on all 

culturing surfaces, 3D scaffolds or 2D TCPS. Cells were seen to align along rectilinear or 

hexagonal geometries, and frequently were found stretched inside of pores, anchored to opposing 

struts on either side. Even in BSA control groups, cells plated on rigid PCL scaffolds exhibited 

robust cell spreading, an extensive actin network, and expression of vinculin; this contrasted with 

ASCs seeded onto soft collagen protein scaffolds, where cells appeared less spread. 

ASC cytoskeletal morphology was also assessed 14 days post-seeding (Figure 2.10). 

Interestingly, ASCs cultured for 14 days on scaffolds exhibit a noticeable increase in cell density 

and spreading after 2 weeks, indicating a delayed cellular response and slower proliferative 

response. These results demonstrate that ASC activity can be stimulated using TFG- β1 for rapid 
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(3 days) tissue regeneration while scaffolds alone are capable of maintaining viable ASCs for 

prolonged growth periods (2 weeks). 

As an important component of tissue regeneration is the synthesis of new ECM, the 

presence of fibronectin was assessed three days post-cell seeding on scaffolds and with media 

supplemented with transforming growth factor beta 1 (TGF-β1) or bovine serum albumin (BSA) 

as a control (Figure 2.11). Fibronectin is a high-molecular weight (~440 kDa) glycoprotein of the 

ECM that cells attach to through membrane-spanning receptor proteins, integrins. 

Fibronectin also binds to other extracellular matrix proteins such as collagen and fibrin. 

Consistent with previous findings, TGF-β1 was sufficient to stimulate fibronectin production on 

all 3D scaffolds and the 2D TCPS. Between the BSA groups, printed collagen scaffolds appeared 

to increase fibronectin protein production in comparison with PCL scaffolds or 2D TCPS 

surfaces. 

The presence of fibronectin was also evaluated 14 days post-seeding (Figure 2.12). By 

day 14, the presence of fibronectin was comparable to day 3 TGF-β1 supplemented groups. The 

increase in fibronectin detected at day 14 suggests deposition of new fibronectin matrix by the 

ASCs. Fibronectin content appeared relatively uniform between PCL and collagen scaffolds by 

week 2. Taken together, these results have shown that ASCs can be stimulated with additional 

bioactive molecules and reinforces the strategy of using a biomaterial as a delivery system as 

well as a support structure for cells. 

ASC phenotype was studied using adipogenic and osteogenic induction media types, as 

well as a proliferative media control. After 3-week culturing on PCL or collagen scaffolds, 

PPARγ and RUNX2 expression was visualized by immunofluorescence (Figure 2.13). PPARγ is 

a nuclear receptor mainly present in adipose tissue; it regulates fatty acid storage and stimulates 

lipid uptake. In contrast, RUNX2 is a transcription factor associated with osteoblast 

differentiation. Most ASCs appeared positive for PPARγ, which was not affected by culturing in 

either osteogenic induction media or standard proliferative media. Varying the 3D scaffolding 

architecture did not appear to influence ASC phenotype, however this might be a caveat of ASCs 

derived from pathological lower limbs.
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Figure 2.8. ASC Proliferative Potential. A) Hoechst was used to stain DNA on TCPS and 

collagen scaffolds, while propidium iodide (PI) was used for PCL samples. EdU-positive cells 

are indicative of cells that were in the process of cell division. B) The fraction of EdU-positive 

cells was quantified for TCPS, PCL rectilinear, and collagen rectilinear and hexagonal 3D 

printed scaffolds. N=3, n=10, Two Way ANOVA with Tukey test, **p<0.01. All data is 

represented as mean ± SEM.  
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Figure 2.9. ASC Cytoskeletal Morphology. ASCs cultured on scaffolds or TCPS for 3 days 

with media supplemented with either A) 10 ng/mL BSA or B) 10 ng/mL TGF- β1. 
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Figure 2.10. ASC Cytoskeletal Morphology after 14 Days. ASCs cultured on scaffolds or 

TCPS for 14 days with media supplemented with 10 ng/mL BSA.  
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Figure 2.11. Fibronectin Detection After 3 Days. ASCs cultured on scaffolds or TCPS for 3 

days with media supplemented with either A) 10 ng/mL BSA or B) 10 ng/mL TGF- β1.  
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Figure 2.12. Fibronectin Detection After 14 Days. ASCs cultured on scaffolds or TCPS for 14 

days with media supplemented with 10 ng/mL BSA. 
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Figure 2.13. ASC Phenotype Analysis. ASC phenotype after culturing for 3 weeks in 

osteogenic induction media, adipogenic induction media, or proliferative media control.  
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2.4 Discussion and Conclusion 
In this proof-of-concept tissue engineering study, soft collagen bioink scaffolds were 

reproducibly printed using a gelatin microparticle support bath. The gelatin support slurry was 

shear-sensitive and behaved similarly to a Bingham plastic fluid. Gelatin microparticle size was 

found to be dependent on the preparation method. Longer durations of mechanical blending 

resulted in smaller gelatin microparticles that displaced during embedded printing with higher 

resolution. Embedded printing has become a promising technique for the additive manufacture of 

viscous, soft materials such as elastomers, gels, and hydrogels.28,29 Specifically, the printing of 

biological hydrogels, composed of polysaccharides and proteins, are difficult to print because the 

biological materials must gel in situ after extrusion from the print nozzle. To be suited for 

bioprinting, a material must have appropriate mechanical fluid properties. If print materials are 

not fluid enough, or if they gel quickly, a blockage will form inside the small-diameter print 

nozzle and affect printing results. Fluid-like materials require surrounding support from a 

sacrificial material such that the printed object does not collapse or deform due to material 

viscosity and excess weight deposited layer-by-layer. Embedded printing of biological materials 

has been employed previously, such as in the fabrication of a sodium alginate coronary arterial 

tree with a perfusable, hollow lumen31 as well as the printing of perfusable polydimethylsiloxane 

(PDMS) tubes within a hydrophilic Carbopol gel support.32 Embedded printing of biologically 

relevant materials has the potential to precisely control microstructure and anisotropy during 

layer-by-layer assembly of 3D constructs. 

Embedded printed collagen type I scaffolds and fusion printed PCL scaffolds were 

printed with reproducible quality and fidelity. Both material scaffolds were sterilizable, making 

them suitable for in vitro biological applications. Collagen and PCL scaffolds supported ASC 

proliferation, with the majority of ASCs seeded onto PCL scaffolds undergoing cell division. 

PCL scaffolds were quite rigid; the material has a documented Young’s (elastic) modulus in the 

range of 340 to 365 MPa.35 Matrix stiffness is known to regulate cell behavior 

(mechanosensation) and migration (durotaxis); stiff matrix environments have been shown to 

promote proliferative behavior in a variety of cell types, including hepatocytes, stellate cells, and 

fibroblasts.36 Our findings are consistent in this regard, with ASCs demonstrating a robust 

proliferative response on PCL scaffolds compared to soft collagen protein scaffolds. Importantly, 



www.manaraa.com

 88 

cell proliferation for tissue engineering applications should be regulated to prevent pathological 

cell growth and tumor formation.37 

Cell response to the 3D printed scaffolds was evaluated by studying ASC cytoskeletal 

morphology and fibronectin deposition. On rectilinear PCL scaffolds, cells exhibited a high 

degree of spreading, a mature F-actin network, and interaction with the ECM via vinculin. 

However, fibronectin synthesis on PCL scaffolds appeared reduced compared to collagen 

scaffolds after 3 days of culturing. ASCs responded positively to TGF-β1 treatment; independent 

of scaffold material or infill architecture, including this bioactive molecule in culture improved 

cell density, spreading, and fibronectin synthesis. This is expected, given that TGF-β1 protein 

regulates cell proliferation, differentiation and growth, and can modulate expression and 

activation of other growth factors including interferon gamma and tumor necrosis factor alpha.38 

This study has demonstrated that ASC in vitro activity can be stimulated using TFG- β1 for rapid 

(3 days) tissue regeneration while scaffolds alone are capable of maintaining viable ASCs for 

prolonged periods (2 weeks). 

In this study, ASC phenotype appeared unaffected by scaffold material (PCL or collagen) 

or architecture (rectilinear or hexagonal). This may have been a caveat of using ASCs isolated 

from adipose tissue obtained from lower limb amputation. ASCs in this study were largely 

PPARγ-positive, suggesting an adipogenic phenotype. Even when seeded onto TCPS, the 

majority of ASCs were PPARγ-positive, with minimal RUNX2 expression detected (Results not 

published; ASC cultures reached hyperconfluency rapidly on TCPS, with culture decline and 

apoptosis occurring well before the 3-week experimental end point. In contrast, ASC 

differentiation on PCL and collagen scaffolds took approximately 3 weeks to obtain expression 

of PPARγ and RUNX2). Three-dimensional geometry has been shown to successfully influence 

stem cell lineage. For example, mesenchymal stem cells (MSCs) seeded onto 3D printed 

poly(propylene fumarate) scaffolds demonstrated increased expression of early osteogenic 

markers when cultured onto cylindrical pores, while cubic pores influenced gene expression for 

MSCs undergoing adipogenesis and chondrogenesis.39 Scaffold geometry of 3D-printed gelatin 

constructs, containing either 90° square shaped pores or 60° triangular pores, significantly 

influenced the differentiation and function of seeded hepatocytes.40 In addition to pore geometry, 

pore size also influences cell behavior. PCL scaffolds printed into square, triangular, and 

rhomboidal pore geometries of varied pore diameters from 550 to 750 µm were shown to 
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influence human MSC behaviors such as adhesion, viability and proliferation.41 Similarly, MSCs 

seeded onto either PCL or 300PEOT55PBT45 (PolyActive300/55/45) printed scaffolds 

presenting an axial gradient of pore size and total porosity displayed improved osteogenic 

differentiation.42 

In conclusion, 3D printing of biomaterials allows for rapid prototyping and precise 

control of construct geometry, microstructure, and anisotropy during layer-by-layer assembly. 

Relevant biomaterials will ideally be biocompatible, supporting cell adhesion, expansion, and 

viability. Biomaterials and their degradation products should be non-toxic and non-

immunogenic. Furthermore, biomaterial properties should be closely matched to the tissues they 

are replacing. This study has demonstrated that soft collagen protein scaffolds stimulate 

fibronectin production in vitro and future work should be done to assess validity as a soft 

connective tissue substitute. Rigid PCL scaffolds in contrast support robust cell spreading and 

proliferation and should be investigated for implementation in the regeneration of stiff tissues 

(for example, bone), in long-term wound management applications (for example, management of 

non-healing wounds), and regions of repetitive mechanical loading that require stronger scaffold 

constructs (for example, wounds at the sole of the foot). 
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3 Investigating the Effects of Exogenous Galectin-3 in Murine 

Wound Healing 

3.1 Introduction 
 Skin acts as a barrier between the external environment, facilitates sensation and 

thermoregulation. Following injury, normal wound healing involves four overlapping 

spatiotemporally coordinated events, hemostasis to halt bleeding, inflammation to clear the 

wound of debris and infectious bodies, proliferation of cells and re-epithelialization to restore 

skin barrier function.1 However, factors such as advanced age, vascular insufficiency, limb 

trauma, obesity, and diabetes may result in a reduced ability to heal. If a wound persists beyond 

12 weeks, it is classified as a non-healing chronic wound. The most common types of chronic 

wounds include venous ulcers, arterial ulcers, pressure ulcers, and diabetic ulcers.2 

Chronic wounds are characterized by increased expression of pro-inflammatory cytokines 

such as interleukin-1 (IL-1), IL-6, and tissue necrosis factor alpha (TNF-α), combined with 

decreased levels of pro-regenerative cytokines including transforming growth factor beta (TGF-

β) and vascular endothelial growth factor (VEGF).3 An imbalance of proteolytic activity leads to 

excessive degradation of the extracellular matrix, inhibiting cell migration and proliferation.4–6 

Decreased levels of growth factors, such as keratinocyte growth factor, fibroblast growth factor 2 

(FGF-2) and VEGF, further prevents progression towards proliferative and re-epithelialization 

stages.3 Chronic wound resolution thus depends on converting the pro-inflammatory 

microenvironment into a pro-fibrotic one. 

Galectin-3, a matricellular protein and member of the lectin family, has been implicated 

in modulating the inflammatory phase of wound healing. In vitro, galectin-3 treatment increases 

monocyte and macrophage migration.7 Galectin-3 is important for macrophage linkage to 

neutrophils and increases neutrophil phagocytosis.8 Moreover, this protein is implicated in 

regulating alternative (M2) macrophage activation, an important process for inflammation 

resolution.9 Studies employing galectin-3 knockout mice have shown that macrophages derived 

from bone marrow of galectin-3 null animals display diminished ability to undergo alternative 

activation. Thus, the use of galectin-3 in modulating prolonged inflammation of a chronic wound 

is of interest. The context in which its regulatory activity is preserved, including therapeutic 

concentration range and delivery system, remains to be elucidated. 
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Blend electrospinning has previously been employed for the incorporation and delivery 

of proteins from a biomimetic nanofibrous scaffold. Electrospun scaffolds display high porosity 

and large surface area-to-volume ratios.10,11 Delivery of human recombinant galectin-3 via an 

electrospun gelatin scaffold in wound healing is of interest, as the scaffold facilitates effective 

delivery and distribution of the protein into the wound bed microenvironment.12 In addition, the 

scaffold would act as a temporary extracellular matrix, directing tissue regeneration by providing 

a site for cell adhesion, proliferation, and migration into the wound bed. The goal of this research 

was to generate an electrospun gelatin scaffold loaded with recombinant galectin-3 and assess 

the effect of exogenous galectin-3 delivery in cutaneous wound healing. 

 

3.2 Materials and Methods 

3.2.1 Electrospinning Galectin-3-Loaded Fibrous Gelatin Scaffolds 

A polymer solution consisting 50 μg/mL recombinant human galectin-3 (R&D Systems, 

Minneapolis, MN, USA) and 21% (w/v) Type B Bovine gelatin (Sigma-Aldrich, St. Louis, MO, 

USA) dissolved in 40% (v/v) acetic acid (Thermo Fisher Scientific, Waltham, MA, USA) was 

aspirated into a plastic 1cc Tuberculin syringe (Terumo, Shibuya, Tokyo, Japan) connected to 

PTFE capillarity tubing (Saint-Gobain Performance Plastics, France) fitted with a 20 gauge 

blunt-tip stainless steel needle. The tube and needle were primed by pushing the syringe plunger 

until the electrospinning solution began to drip from the needle. The syringe was secured in a 

pump (VWR International, Radnor, PA, USA) and the needle was connected to a high voltage 

DC power supply (Gamma High Voltage Research, Ormond Beach, FL, USA). The needle tip 

was positioned 10 cm from a grounded stainless steel rotating barrel. A piece of aluminum foil 

was wrapped around the rotating barrel and secured with electrical tape to act as the collecting 

surface. During electrospinning, a 15-kV voltage was applied as the electrospinning solution was 

pumped at a flowrate of 0.5 mL/hr. Scaffolds were electrospun onto the collection barrel rotating 

at 100 revolutions per minute (RPM) for 1.5 hours using a total volume of 0.75 mL of solution. 

Fibrous scaffolds were then crosslinked in a glass desiccator (VWR International) containing 

drierite (W.A. Hammond Drierite Co. Ltd, Xenia, OH, USA) using the vapour from a 5 mL 

solution consisting of 1.5% (v/v) glutaraldehyde (GTA) (Sigma-Aldrich, St. Louis, MO, USA) in 

anhydrous ethyl alcohol (Commercial Alcohols, Brampton, ON). The desiccator was held under 
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vacuum for 20 min and scaffolds were stored in the sealed desiccator for 48 hr. Following 

crosslinking, scaffolds were transferred to sealed plastic containers with desiccant at 

4°C. 

 

3.2.2 Scanning Electron Microscopy 

 Gelatin scaffolds (N=3) were electrospun using gelatin polymer solutions of 20, 21, 25, 

and 30% (w/v) concentration. An 8 mm diameter circular sample was collected per scaffold 

using a biopsy punch (Integra Miltex, York, PA, USA). Scaffold samples were fixed onto 15 mm 

aluminum stubs using adhesive carbon discs and sputter coated with osmium (OPC-80T, Filgen 

Inc., Japan), then imaged using a Hitachi 4300-N scanning electron microscope (Hitachi Ltd., 

Japan) at the Biotron Integrated Microscopy Facility (Western University). Images were acquired 

at 1000X, 3000X, and 5000X magnifications at an accelerating voltage of 4 kV. ImageJ software 

(National Institutes of Health, Bethesda, MD, USA) was employed to assess the diameter of 

fibers (n=250) from 5 images taken at the same magnification. 

 

3.2.3 Effect of Galectin-3 on Murine Wound Healing In Vivo 

 Galectin-3-loaded fibrous gelatin scaffolds were recovered from storage at 4°C and 8 mm 

diameter circular samples were collected using a biopsy punch (Integra Miltex, York, PA, USA). 

Each scaffold was separated from its tinfoil base and quenched in 0.1 M glycine (Sigma-Aldrich, 

St. Louis, MO, USA) for 1 hr at 23°C to remove residual glutaraldehyde. Scaffolds underwent 

three 15 min PBS rinses then were stored overnight at 4°C. Prior to implantation, scaffolds were 

exposed to ultraviolet (UV) treatment for 2 hr. 

 All animal procedures followed protocols approved by the University Council on Animal 

Care at Western University.  Nine male wild type (WT) (C57BL/6J; 000664) mice (The Jackson 

Laboratory, Sacramento, CA, USA), 14 weeks of age at the time of surgery, were employed. 

Approximately 30 min prior to surgery, 0.05 mg/kg of buprenorphine was administered to each 

mouse as a pre-emptive analgesic. Animals were anaesthetized using 90 mg/kg ketamine and 5 

mg/kg xylazine, with inhalation of 3% isoflurane in oxygen as needed. Hair was shaved from the 

back of the animal and 1 cc of Nair cream (Church & Dwight Co., Inc., Ewing, NJ, USA) was 

applied topically for 5 min to remove remaining hair by chemical depilation. The Nair cream was 

wiped off and the underlying murine skin was rinsed with warm water, then dried. Povidone 
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iodine was used to clean the area. Four full-thickness dermal wounds measuring 6 mm in 

diameter were created using a sterile biopsy punch (Integra Miltex, York, PA, USA). Each 

wound was assigned one of four treatment conditions: empty (control), implantation of a 21% 

(w/v) gelatin electrospun scaffold containing 50 μg/mL galectin-3, or daily topical application of 

10 μL of galectin-3 at a concentration of either 12.5 μg/mL or 25 μg/mL in PBS. Treatments 

were rotated clockwise in each mouse to eliminate positional effects on wound healing. 

Following completion of the surgical procedure, atipamezole was administered at a dose of 1 

mg/kg. Animals were given buprenorphine again 12 hr post-surgery. 

 Mice were sacrificed using carbon dioxide exposure as follows: three mice on day 3, 

three mice on day 7, and two mice on day 9 post-surgery (one animal was sacrificed early and 

excluded from the study due to impaired recovery 1-day post-surgery). Wound tissue samples 

were harvested immediately and fixed in 10% neutral buffered formalin (Sigma-Aldrich, St. 

Louis, MO, USA) for 24 hr at 4 °C. Tissues were transferred to 70% ethanol (Commercial 

Alcohols) and were paraffin embedded at the Molecular Pathology Core Facility (Robarts 

Research Institute, London, ON, Canada). Serial 5 μm sections were taken from the center of the 

wounds. 

 

3.2.4 Murine Wound Healing Kinetics 

  On days 0, 3, 5, 7, and 9 post-surgery, each animal was lightly anesthetized by inhalation 

of 3% isoflurane in oxygen, and the back area containing the dermal biopsy wounds was imaged 

by digital camera. A ruler was placed next to the animal and included in the digital photographs 

for scale documentation. Wound bed area was quantified using ImageJ software (National 

Institutes of Health, Bethesda, MD, USA). 

 Serial 5 μm wound sections were stained with Masson’s Trichrome at the Molecular 

Pathology Core Facility (Robarts Research Institute, London, ON, Canada) and imaged at 5X 

magnification using an Axio Imager M1 light microscope (Carl Zeiss AG, Oberkochen, 

Germany). Images were stitched together, and epithelial tongue length and epithelial tongue 

thickness were evaluated. Epithelial tongue length was measured as the distance from the tip of 

the epithelial tongue to the unwounded dermis. Epithelial tongue thickness was evaluated as the 

epithelial tongue area divided by the epithelial tongue length. 
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3.2.5 Effect of Galectin-3 on Arginase I Enrichment During Wound Healing 

 Serial 5 μm wound sections were rehydrated, rinsed with PBS for 5 min and subjected to 

enzymatic antigen retrieval for 15 min at 37°C. Samples were again rinsed in PBS for 5 min at 

room temperature and blocked using 10% horse serum in PBS for 30 min at room temperature in 

a humidified chamber. Sections were incubated in primary chicken antibody against arginase I 

(ABS535; MilliporeSigma, Burlington, MA, USA) diluted at 1:25 in 10% horse serum overnight 

at 4°C. Sections were rinsed in PBS for 5 min and incubated with Alexa Fluor 488 goat anti-

chicken (Abcam, Cambridge, United Kingdom) at a dilution of 1:500 and Hoechst 33342 

(Trihydrochloride Trihydrate; Thermo Fisher Scientific) at a dilution of 1:1000 in 10% horse 

serum for 1 hr at room temperature, protected from light. Sections were rinsed thoroughly in 

PBS, mounted using Immu-Mount (Thermo Fisher Scientific) mounting medium, sealed with 

glass coverslips, and imaged using an Axio Observer Z1 fluorescence microscope (Carl Zeiss) 

using the appropriate filters. Negative controls were also stained without the addition of primary 

antibodies. These negative control slides were imaged to set the threshold values for the 

detection of fluorescence (Appendix F). ImageJ software was used to quantify the number of 

arginase I-positive cells in the wound bed at days 7 and 9 (N=2, n=5). 

 

3.3 Results 

3.3.1 Preparation of Electrospun Galectin-3/Gelatin Scaffolds 

The effect of gelatin concentration on electrospun fiber morphology was assessed by 

spinning gelatin polymer solutions at three concentrations, 20%, 25%, and 30% (Figure 3.1). As 

the concentration of gelatin increased, the resulting fiber diameter also increased. The majority 

of fibers spun from 30% weight gelatin ranged in diameter from 500-2000 nm in diameter, but 

there was significant variation in fiber size, with some fibers measuring over 4000 nm in 

diameter. At 25% weight, the majority of fibers were within the range of 300-500 nm, while 

lowering the gelatin to 20% resulted in fibers 100-200 nm in diameter. Fiber diameter was 

refined using 21% weight gelatin in the electrospinning polymer solution, resulting in a tighter 

distribution of fibers around 200 nm in diameter (Figure 3.2). Fibers spun from 21% gelatin 

displayed a mean diameter of 181 ± 40 nm.
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Figure 3.1. Effect of Gelatin on Electrospun Fiber Morphology. A) Representative scanning 

electron microscopy images for scaffolds spun from 20%, 25% and 30% gelatin polymer 

solutions are shown. B) Quantified frequency distribution of fiber diameters for 20%, 25% and 

30% gelatin scaffolds.  
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Figure 3.2. Refined Electrospun Fiber Morphology. A) Representative scanning electron 

microscopy image of 21% gelatin electrospun fibers. B) Quantification of fiber diameters. Fibers 

spun from 21% gelatin displayed a mean diameter of 181 ± 40 nm.  
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3.3.2 In Vivo Effects of the Electrospun Galectin-3/Gelatin Scaffold 

To investigate the effects of exogenous recombinant galectin-3 in murine wound healing, 

full-thickness dermal wounds were created on the backs of wild type mice. Independent of 

treatment, all dermal wounds appeared much smaller by day 9 post-wounding (Figure 3.3). The 

wound area was measured on days 0, 3, 5, 7 and 9 to calculate wound closure kinetics (Figure 

3.4). No differences between each of the treatment groups and the experimental control (empty 

wound) were observed at all time points assessed. Wound closure increased steadily over the 9-

day period for all wounds assessed, independent of treatment. These results demonstrated that 

neither implantation of a galectin-3/gelatin electrospun scaffold, nor daily topical delivery of 

galectin-3, delayed wound closure in vivo. 

 Since exogenous delivery of galectin-3, either by slow release from an electrospun 

scaffold or by topical application did not affect wound healing kinetics, re-epithelialization of the 

wound was studied. Masson’s trichrome staining for sections obtained from days 7 and 9 post-

wounding revealed a great amount of variation between biological replicates, regardless of 

wound treatment group (Figure 3.5). Wounds re-epithelialized at the same mean rate, and no 

differences were found between epithelial tongue length or thickness between treatment groups 

(Figure 3.6). Variation between biological replicates for all treatment groups was apparent. For 

instance, focusing specifically on the topical galectin-3 (12.5 μg/mL) experimental treatment, a 

thick tongue and fully re-epithelialized wound was observed for one animal (Figure 3.7A), while 

another day 7 replicate exhibited a much thinner tongue and significantly less re-epithelialization 

of the wound (Figure 3.7B). Day 9 animals were similar with one displaying full migration of the 

epithelial tongue (Figure 3.7C) while another displayed minimal re-epithelialization (Figure 

3.7D). While one day 7 animal exhibited a thick epithelial tongue re-epithelializing the wound, 

both day 9 animals of this group exhibited noticeably thinner epithelial tongues, indicating that 

the enhanced re-epithelialization observed in a single day 7 mouse was likely not a result of the 

galectin-3 topical treatment of the wound but rather random occurrence. 

 The influence of exogenous galectin-3 from an electrospun galectin-3/gelatin scaffold 

and by daily topical application on macrophage polarity during full-thickness wound healing was 

also investigated. While qualitatively it appeared that increasing galectin-3 concentration at the 

wound led to more arginase I-positive macrophages (Figure 3.8), quantification revealed that the 
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mean density of arginase I-positive cells in the wounds was not different between treatment 

conditions at day 9 (Figure 3.9).  
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Figure 3.3. Representative Images of Murine Full-Thickness Dermal Wounds. Full 

thickness excisional wounds measuring 6 mm in diameter were treated with implantation of an 

electrospun scaffold composed of 21% gelatin blended with galectin-3 (50 μg/mL), daily topical 

treatment of galectin-3 in PBS (12.5 μg/mL or 25 μg/mL) or left empty (control). Representative 

images of the four conditions are shown at days 0, 3, 5, 7 and 9 post-wounding. 
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Figure 3.4. Quantification of Murine Wound Healing Kinetics. Full thickness excisional 

wounds measuring 6 mm in diameter were treated with implantation of an electrospun scaffold 

composed of 21% gelatin blended with galectin-3 (50 μg/mL), daily topical treatment of 

galectin-3 in PBS (12.5 μg/mL or 25 μg/mL), or left empty (control). Percentage of wound area 

closure was calculated over a 9-day period. Data is represented as mean ± SEM.  
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Figure 3.5. Masson’s Trichrome Staining Following In Vivo Full-Thickness Wounding. Full 

thickness excisional wounds measuring 6 mm in diameter were treated with implantation of an 

electrospun scaffold composed of 21% gelatin blended with galectin-3 (50 μg/mL), daily topical 

treatment of galectin-3 in PBS (12.5 μg/mL or 25 μg/mL concentration), or left empty (control). 

Sections show the wound edge for each condition and the epithelial tongue. A) Sections from 

day 7 post-wounding. B) Sections from day 9 post-wounding.  
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Figure 3.6. Re-epithelialization and Epithelial Thickness Following In Vivo Full-Thickness 

Wounding. Full thickness excisional wounds measuring 6 mm in diameter were treated with 

implantation of an electrospun scaffold composed of 21% gelatin blended with galectin-3 (50 

μg/mL), daily topical treatment of galectin-3 in PBS (12.5 μg/mL or 25 μg/mL), or left empty 

(control). A) Epithelial tongue length was calculated at days 7 and 9 post-wounding. B) 

Epithelial tongue thickness was calculated at days 7 and 9 post-wounding. All data is represented 

as mean ± SEM.  
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Figure 3.7. Example of Biological Variability in Masson’s Trichrome Staining of Full-

Thickness Wounds. All wounds shown were treated with daily topical application of galectin-3 

in PBS (12.5 μg/mL concentration). A and B) Two biological replicates from day 7 post-

wounding. C and D) Two biological replicates from day 9 post-wounding.  
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Figure 3.8. Arginase I Enrichment of Full-Thickness Wounds. Full thickness excisional 

wounds measuring 6 mm in diameter were treated with implantation of an electrospun scaffold 

composed of 21% gelatin blended with galectin-3 (50 μg/mL), daily topical treatment of 

galectin-3 in PBS (12.5 μg/mL or 25 μg/mL concentration), or left empty (control). Sections 

show the relative amounts of arginase I-positive cells (green) in the wound bed for each 

treatment condition. Cell nuclei are shown in blue. Two biological replicates are shown for each 

treatment. 
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Figure 3.9. Arginase I-Positive Cell Density within the Wound Bed. Full thickness excisional 

wounds measuring 6 mm in diameter were treated with implantation of an electrospun scaffold 

composed of 21% gelatin blended with galectin-3 (50 μg/mL), daily topical treatment of 

galectin-3 in PBS (12.5 μg/mL or 25 μg/mL), or left empty (no scaffold control, daily topical 

PBS). Density of arginase I-positive cells was quantified from 5 sections. All data is represented 

as mean ± SEM. 
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3.4 Discussion and Conclusion 
 Prolonged inflammation, a hallmark of chronic wounds, halts progression to proliferative 

and re-epithelialization phases, preventing wound resolution and restoration of the epithelial 

barrier.3 Galectin-3 has been indicated in wound healing processes, including monocyte 

migration,7 alternative macrophage activation,9 and increased re-epithelialization in corneal 

wounds.13,14 However, the efficacy of exogenous galectin-3 in treating skin wounds appeared to 

be tissue- and context-specific. Based on its described functions, we hypothesized that local 

delivery of galectin-3 could regulate macrophage activation and increase re-epithelialization in 

skin healing. An electrospun gelatin scaffold was employed for the localized delivery of galectin-

3. Electrospun nanofibers exhibit a large surface area for distribution of the protein.15,16 Type B 

bovine gelatin is derived from collagen17 and has suitable biorecognizable properties.18,19 While 

electrospinning of collagen has demonstrated loss of collagen’s tertiary structure,20 gelatin has 

been widely employed with results showing biocompatibility and functionality. Electrospun 

gelatin scaffolds have been shown to enhance wound closure in a full thickness wound healing 

model in rats.21–24 Electrospun gelatin scaffolds, both alone and mixed with other polymers, have 

also been employed for the delivery of growth factors and bioactive molecules.25–27 Moreover, 

the biodegradability of gelatin can be tuned using glutaraldehyde crosslinking, wherein the 

aldehyde groups react with lysine or hydroxylysine residues to form aldimine linkages.28,29 

Subsequent glycine quenching of the scaffolds blocks unreacted aldehyde groups.30 The 

electrospinning polymer solution was prepared by dissolving type B bovine gelatin in 40% (v/v) 

acetic acid. Acetic acid has been used for the electrospinning of collagen, resulting in fiber 

diameters distributed around 100-200 nm.31,32 By electrospinning with acetic acid, the use of 

highly cytotoxic and protein structure damaging fluoroalcohols is avoided.33 

Our lab has previously demonstrated the refinement of scaffold manufacturing protocols 

to create bead-free and ribbon-free fibers with diameters measuring within the range of the native 

extracellular matrix.34,35 The polymer solution flowrate, collector distance, and the concentration 

of the polymer have all previously been reported to influence the resulting electrospun fiber 

diameter and morphology.18,36,37 As a result, 0.5 mL/hr was selected for electrospinning since 

this flowrate decreases the amount of time required for electrospinning as well as the duration 

that galectin-3 is exposed to the solvent. A collector distance of 10 cm was selected for 

electrospinning as this facilitates a wider distribution of fibers on the rotating mandrel, 
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maximizing scaffold surface area. Consistent with other studies, this thesis has demonstrated that 

increasing the concentration of gelatin results in increased fiber diameter.24,30,38 By using a 21% 

gelatin polymer solution, electrospun scaffolds exhibited ribbon-like fibers within the range of 

collagen fibril sizes found in human tissues.10 Electrospun scaffolds exhibit densely packed 

nanofibers and small sized pores, which is not ideal. Scaffolds with pores 100 μm in diameter 

and overall scaffold porosity of 90% has been shown to support the infiltration of cells from the 

surface of the scaffold.39 Porosity can be improved using salt or sacrificial secondary polymers, 

which are deposited during the electrospinning process and subsequently removed.40,41 

Our lab has shown that macrophage polarization was not affected by treatment with an 

electrospun scaffold containing 6.7 μg/mL galectin-3 in murine full-thickness wound healing.34 

Thus, we sought to elucidate the conditions where galectin-3 can affect macrophage polarization 

in vivo. In this thesis, recombinant human galectin-3 was added to the electrospinning gelatin 

solution to a final concentration of 50 μg/mL, while daily topical delivery was also investigated 

using 12.5 μg/mL and 25 μg/mL galectin-3 solutions in PBS. These concentrations are much 

higher than those needed to achieve effects in vitro, where concentrations as low as 1 μg/mL 

have been used to enhance keratinocyte migration42 and 0.001-0.01 μM (0.026152-0.26152 

μg/mL) to create a concentration-dependent effect on monocyte recruitment.43 Additionally, 

while 6.3 μg/mL galectin-3 promoted human keratinocyte migration, use of 50 μg/mL limited 

migration in vitro.44 However, galectin-3 activity is understood to be context-specific, and in vivo 

activity is not always accurately reflected in vitro. The use of galectin-3/gelatin scaffolds and 

topical deliver of galectin-3 did not alter wound closure kinetics during the 9-day period. In 

contrast to our findings, the use of gelatin scaffolds alone has been reported to increase wound 

closure in full-thickness skin healing in rats.21 However, several factors could have contributed 

to these discrepancies including the use of rats instead of mice, the difference in size of the initial 

wounds, and the use of Tegaderm™ (3M) secondary bandaging to cover the wounds.21 

During the proliferative/epithelialization stages of wound healing, keratinocyte 

proliferation and migration over the dermis restores the epithelial barrier.1 Studies of dermal 

healing have demonstrated that galectin-3 deficient mice exhibit impaired re-epithelialization, 

which manifests in decreased length of the epithelial tongue, and therefore decreased re-

epithelialization at days 242 and 745 post-wounding. However, when recombinant human 

galectin-3 was added to wounds of wildtype mice topically or using a gelatin scaffold, no 
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differences in epithelial thickness were observed at days 7 and 9 post-wounding. This result was 

consistent with previous reports showing no defect in epithelial thickness in galectin-3 knockout 

mice.42,45 In contrast, studies of corneal healing have shown that exogenous human recombinant 

galectin-3 can increase re-epithelialization in mice13 and in monkey corneal explants,14 

highlighting the issue of the context-dependent roles of matricellular proteins.46 

During the inflammatory phase, monocytes are recruited to the wound by 

chemoattractants and differentiate into macrophages.47 Macrophages mediate wound 

healing through the release of regulatory molecules.48 Classically activated (M1) macrophages 

produce nitric oxide and secrete proinflammatory cytokines including TNF-α, IL-1, IL-6, and IL-

12, while alternatively activated macrophages (M2) are implicated in tissue remodeling and 

secrete TGF-β.49 Control of macrophage activation and whether macrophages can switch 

between M1 and M2 phenotypes is incompletely understood. Galectin-3 has previously been 

implicated in macrophage function.8,9,43 Thus, we sought to investigate whether galectin-3 

treatment using topical galectin-3 and galectin-3/gelatin scaffolds could increase the number of 

M2 polarized macrophages. While day 9 wound sections qualitatively appeared to contain denser 

M2 macrophage populations, quantification showed no differences in M2 macrophage density 

across the four treatment groups. This result was unexpected given that bone marrow derived 

macrophages (BMDMs) from galectin-3 knockout mice show a defect in IL-4 and IL-13 M2 

macrophage polarization in vivo and in vitro.9 However, this study did not investigate the effects 

of exogenous galectin-3 addition, therefore there is no indication galectin-3 would be sufficient 

in rescuing the deficient M2 polarization of BMDMs in galectin-3 null mice. It is possible that 

exogenous galectin-3 alone is not sufficient in upregulating the expression of surface-bound 

galectin-3, the secretion of galectin-3 or upregulating CD98 which are each implicated in the 

suggested autocrine loop that controls M2 activation.9 Moreover, human and murine galectin-3 

are only 80% similar homologously,50 which might contribute to the lack of functionality of 

exogenous human galectin-3 in murine wound healing. 

In conclusion, blend electrospun galectin-3/gelatin scaffolds have been developed which 

to not delay wound healing in a full-thickness murine model. Use of topical galectin-3 

and galectin-3/gelatin scaffolds did not affect wound closure, epithelial thickness, or re-

epithelialization, or influence the density of M2 macrophages in the wound. Future work should 

explore the contexts in which in vivo inflammation can be modulated.  
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4 General Discussion 

4.1 Summary of Thesis Objectives 
Aim 1: Three-Dimensional Bioprinting for Tissue Engineering 

Establish a protocol for soft collagen printing 

 In this thesis, collagen bioink scaffolds were printed by positive-displacement extrusion 

and embedded into a gelatin microparticle support bath. Optimization of the gelatin slurry 

preparation protocol was performed. Gelatin microparticle size was found to be dependent on the 

preparation method. Thus, longer durations of mechanical blending resulted in smaller gelatin 

microparticles that displaced during embedded printing with higher resolution. Rheological 

testing of the gelatin slurry demonstrated a shear-sensitive support slurry that behaved similarly 

to a Bingham plastic fluid. Computer-aided design was employed to generate 3D scaffold 

rectangular prisms (10 x 10 x 0.5 mm) which were sliced using rectilinear and hexagonal infill 

patterns at 20% density. Scaffolds were printed using a high concentration bovine type I collagen 

bioink and exhibited high print fidelity and reproducibility. 

 

Polycaprolactone scaffold printing 

 Computer-aided design was employed to generate a 3D scaffold rectangular prism (50 x 

50 x 2 mm) which was sliced using a rectilinear infill pattern at 50% density. Polycaprolactone 

(poly(ϵ-caprolactone); PCL) constructs were printed using low temperature polymer fusion 

printing. From the printed construct, 6 mm diameter circular samples were cut and functionalized 

by argon plasma treatment. 

 

In vitro proof-of-concept ASC biocompatibility and differentiation 

 Three-dimensional printed scaffolds were assessed in vitro using human adipose-derived 

stromal cells (ASCs). ASCs seeded onto PCL scaffolds showed the greatest proliferative 

potential (96% of cells), while ASCs on either rectilinear or hexagonal collagen scaffolds 

exhibited less EdU incorporation (~10% of cells). Treatment of ASCs with TGF-β1 stimulated 

cell spreading, and fibronectin production after 3 days post-seeding. In the absence of TGF-β1, 

scaffolds supported bioactivity and after 14 days on scaffolds, ASCs exhibited increased cell 

density, spreading, and fibronectin deposition. Together, these results demonstrated that ASC 
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activity can be stimulated using TGF-β1 for rapid (3 days) tissue regeneration while scaffolds 

alone are capable of maintaining viable ASCs for prolonged growth periods (2 weeks). Lastly, 

ASC phenotype was assessed after treatment with osteogenic and adipogenic induction factors 

for 3 weeks. ASCs demonstrated a PPARg-positive phenotype. 

 

Aim 2: Effects of Exogenous Galectin-3 in a Murine Wound Healing Model 

Electrospin galectin-3-loaded gelatin scaffolds 

 The effect of gelatin concentration on electrospun fiber morphology was assessed by 

spinning gelatin polymer solutions at three concentrations, 20%, 25%, and 30%. The majority of 

fibers spun from 30% weight gelatin ranged in diameter from 500-2000 nm in diameter, with 

significant variation in fiber size. At 25% weight, the majority of fibers were within the range of 

300-500 nm, while lowering the gelatin to 20% resulted in fibers 100-200 nm in diameter. Fiber 

diameter was refined using 21% weight gelatin in the electrospinning polymer solution, resulting 

in electrospun fibers with a mean diameter of 181 ± 40 nm. 

 

Evaluate effects of exogenous galectin-3 in vivo 

 To investigate the effects of exogenous recombinant galectin-3 on murine wound healing, 

full-thickness excisional dermal wounds were created on the backs of wild type mice. Wounds 

were treated with either 21% gelatin electrospun scaffold containing 50 μg/mL recombinant 

galectin-3, daily topical application of galectin-3 at either 12.5 or 25 μg/mL, or no treatment 

(control). All dermal wounds healed with reduction in size by day 9 post-wounding. The wound 

area was measured on days 0, 3, 5, 7 and 9 to calculate wound closure kinetics, but no 

differences were observed between treatments. Epithelial tongue length and thickness was 

quantified at days 7 and 9 post-wounding; however, no differences were evident between any 

conditions. Macrophage polarization within the wound was quantified and the mean density of 

arginase I-positive macrophages in the wounds was found not to be statistically significant 

between treatment conditions. Thus, treatment of murine full-thickness dermal wounds, either 

using a galectin-3/gelatin electrospun scaffold or by daily topical galectin-3, did not delay wound 

healing or re-epithelialization, but did not influence arginase I enrichment within the wounds. 
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4.2 Summary of Fabricated Biomaterial Scaffolds 
 Tissue engineering (TE) has emerged as a promising strategy for the replacement of 

degenerating or damaged tissues in vivo. Also known as regenerative medicine (RM), integral to 

this therapeutic strategy is biomimetic scaffolds and the biomaterial structural components used 

to form them. The scaffold needs to have mechanical properties strong enough to withstand the 

biological forces of the native environment, for example, compression, tension, and shear/torsion 

forces.1 Biomaterials should exhibit elasticity such that the scaffold returns to its normal shape 

after deformation. Moreover, the architectural design should facilitate mass transfer within the 

scaffold for the exchange of gases, nutrients, and waste, and prevention of necrotic zones.2 

Further, biomaterials chosen must exhibit biocompatibility, and depending on the biomaterial 

device itself, biodegradability and bioabsorbability.3 That is, the biomaterial and its degradation 

products must be non-toxic and non-immunogenic. Clearly, design and fabrication of a 

biomaterial scaffold is complex, and various fabrication methods have been investigated to fulfill 

TE requirements. 

 Controlling scaffold architecture allows the fabrication of scaffolds that are highly porous 

and provide physical topographic cues to the cell surface. Current approaches to the assembly of 

three-dimensional (3D) biomaterials employ additive manufacturing (3D printing) to deposit 

materials layer-by-layer for controlled structure and architecture. Polymer fusion printing is of 

interest in TE for the fabrication of scaffolds using synthetic materials. For instance, 

polycaprolactone (poly(ϵ-caprolactone), PCL), a polyester, has been employed for TE 

applications due to its biocompatibility.4–6 PCL has a slow degradation rate of approximately two 

years in the biological environment.7–9 However, by using copolymers such as PCL with dl 

lactide, a more flexible material with a faster degradation rate than the homopolymer can be 

achieved.7 Moreover, the high degree of permeability has made PCL an important candidate for 

the development of drug delivery systems and in bone tissue regeneration.4,10–13 In contrast to 

synthetic biomaterials, scaffolds synthesized from natural biological materials are highly 

compatible with the host environment, being of biological origin. Hydrogel printing, including 

syringe-based extrusion,14,15 printing with fibrin,16,17 gelatin,18 type I collagen,19 and protein 

mixtures obtained from decellularized tissues,20 has been established as a promising TE strategy. 

However, due to their viscosity, printing of soft materials poses the challenge of printed 

materials flowing out of their desired architecture. To overcome this, hydrogels and proteins 
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must gel in situ in order to prevent their collapse or shape deformation.21–23 Embedded printing 

into a secondary hydrogel that acts as a temporary support bath has been proposed.24,25 

In this thesis, fusion printed PCL scaffolds and embedded printed collagen scaffolds were 

employed to assess in vitro biocompatibility using human adipose-derived stem/stromal cells 

(ASCs). ASCs are multipotent, with adipogenic, chondrogenic, neurogenic and osteogenic 

differentiation described.26–29 Collagen, being the main structural component of the extracellular 

matrix,30 has a biological molecular composition and is biodegradable.31 Independent of the 3D 

architectural pattern (rectilinear or hexagonal), collagen scaffolds stimulated ASC fibronectin 

production in vitro while PCL scaffolds supported robust ASC spreading and proliferation. 

These differences in cell responses indicated that polymer fusion printing and hydrogel 

embedded printing methods should be employed depending on the TE application. Collagen’s 

ability to be remodeled and degraded has warranted further investigation into its employment as 

a soft connective tissue substitute.32,33 The scaffold should serve as a temporary cell support that 

is slowly replaced by newly synthesized matrix components in order to mediate regeneration of 

the tissue. In contrast, PCL scaffolds supported ASC proliferation and their rigid structure is well 

suited for applications where stronger scaffold constructs are required, such as in bone 

regeneration and also wound healing at the sole of the foot, where repetitive mechanical loading 

would damage soft scaffolds. Future research is needed to validate the RM potential of printed 

collagen and PCL scaffolds in vivo. 

TE constructs that are not pre-seeded with cells rely on the migration of native cells to 

infiltrate and populate the scaffold. In this study, ASC phenotype was positive for PPARg 

expression. Therefore, future research is needed to determine under which conditions ASCs 

isolated from pathological tissues can be derived towards adipogenic and osteogenic lineages. 

Experiments should be performed with a greater number of patient samples to improve sample 

size and also with non-pathologically sourced ASCs. ASCs were responsive to biomolecule 

stimulation using TGF-b1, thus elucidating mechanisms of slow release of this molecule might 

enhance the outcomes of 3D printed collagen and PCL scaffolds. 

While 3D printed collagen and PCL exhibited controlled material deposition and thus 

scaffold architecture, these constructs were limited in their ability to mimic nanofiber 

morphology. The extracellular matrix (ECM), comprised of collagen fibers and associated 

glycoproteins and polysaccharides, fills the interstitial space and supports cell adhesion. 
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Collagen fibers, the main structural component of the ECM, are typically 100-200 nm in 

diameter.30 Cell anchorage is achieved through focal adhesion complexes where transmembrane 

receptors, such as integrins, link the cytoskeleton to the ECM.34 Three-dimensional printed struts 

exhibit much greater diameters, in the range of 0.4-1 mm, depending on the print nozzle. Higher 

print resolution could improve scaffold morphology, but employment of a smaller-diameter 

nozzle would create new challenges, mainly nozzle blockage. Thus, other methods of scaffold 

production are required to produce scaffolds with nanofibrous strut dimensions. 

Polymer electrospinning, in contrast to 3D bioprinting, allows for the fabrication of 

nanofibrous scaffolds. Electrospun scaffolds display high porosity and large surface area-to-

volume ratios,35,36 facilitating effective delivery and distribution of incorporated bioactive 

factors.37 However, in electrospinning, pore size is not controlled, resulting in densely-packed 

nanofibers. In this thesis, electrospun gelatin scaffolds did not delay healing in vivo, but did not 

enhance wound closure or re-epithelialization states. Future research should attempt to improve 

electrospun scaffold porosity. One possible strategy is the incorporation of salt agents or 

sacrificial secondary polymers within the electrospinning solution, which can be subsequently 

leached out of the scaffold, resulting in greater void regions.38,39 

Together, this thesis has demonstrated that each scaffold fabrication method has its 

advantages and limitations. Bioprinting allows for controlled scaffold architecture and porosity, 

but printing resolution is low, on the scale of approximately 400-1000 µm. Higher scaffold 

resolution can be achieved using electrospun fibers, which exhibit diameters in the range of 100-

200 nm. However, electrospun scaffolds are randomly organized and densely packed, limiting 

the potential for cell infiltration. Design of a TE scaffold must take into consideration the desired 

physical properties in order to choose a suitable material and fabrication method. 

 
4.3 Galectin-3 to Modulate Inflammation In Vivo 
 Chronic wounds are halted at the inflammatory stage of healing, presenting decreased 

levels of growth factors such as TGF-β and VEGF and increased levels of expression of 

inflammatory cytokines, such as IL-1, IL-6, and TNF-α, which increase local inflammation 

further.40 Several underlying factors, such as impaired re-epithelialization, angiogenesis, and 

granulation tissue formation, imbalances in proteolytic activity, persistent bacterial colonization 

and the formation of biofilms, and the accumulation of oxidative stress at the wound site, disrupt 
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the normal wound healing process.40,41 Regardless of wound management and intervention, 

including wound debridement, treatment of infection, application of wound dressings to control 

exudate and moisture, mechanical off-loading to reduce pressure ulcer recurrence, and tissue 

revascularization, chronic wounds remain a significant burden on patients and the healthcare 

system.42 Current available therapies offer low clinical efficacy in the resolution of continuous 

inflammation, keeping the wound in a pro-inflammatory non-healing state.41,43 Thus, a 

therapeutic strategy capable of artificially shifting the wound microenvironment from pro-

inflammatory to pro-fibrotic is of interest. 

 In normal wound healing, macrophages are implicated in the regulation of fibrosis, and 

release signaling molecules such as TGF-β, PDGF-β and galectin 3 to increase myofibroblast 

matrix synthesis and release of tissue inhibitors of metalloproteinases (TIMPs).44 Macrophages 

are a heterogenous population of myeloid cells that exhibit distinct physiological roles. 

Macrophages respond to pathogens and modulate the adaptive immune response, including the 

induction and resolution of inflammation, tissue repair, and homeostasis. Macrophages exhibit 

plasticity in their polarization towards classical M1 (pro-inflammatory) or alternative M2 (anti-

inflammatory) phenotypes, depending on the types of stimuli present. For instance, M1 

macrophages are induced by stimulation with interferon gamma (IFNγ) and lipopolysaccharides 

(LPS).45,46 M2 macrophages can be further classified into four speculated subdivisions based on 

the stimuli and the achieved transcriptional changes. Alternative activated macrophages (M2a) 

are activated by Interleukin (IL)-4 or IL-13, type 2 macrophages (M2b) are believed to be 

activated by immune complexes and LPS, deactivated macrophages (M2c) may be activated by 

glucocorticoids or IL-10, while M2-like macrophages (M2d) may be activated by adenosines or 

IL-6.45,46 Macrophage phenotype, whether classical (M1) pro-inflammatory or alternative (M2) 

anti-inflammatory, determines physiological roles and therefore also the expressed proteome of 

the macrophage. 

 Galectin-3 gene and protein expression is higher in M2 polarized macrophages.47 The 

protein functions during the regulation of M2 macrophage polarization48 and as a 

chemoattractant for monocytes and macrophages,49,50 implicating galectin-3 as a potential 

therapeutic target for inflammatory regulation during skin healing. This thesis has shown that 

delivery of galectin-3, via an electrospun scaffold or topical application, does not enhance M2 

macrophage density at the wound. Biological activity of galectin-3 described in the literature is 



www.manaraa.com

 130 

highly context-specific, leading to discrepancies in its roles during inflammation. For example, a 

study by Mackinnon et al. found that expression and secretion of galectin-3 was suppressed in 

bone marrow-derived macrophages exposed to 100 ng/mL LPS.48 In contrast, Novak et al. 

reported a significant increase in galectin-3 expression from human blood-monocyte derived 

macrophages exposed to 100 ng/mL LPS and 20 ng/mL IFNγ.47 Moreover, in vitro effects of 

galectin-3 do not always translate in vivo since important factors including cell maturation, 

matrix composition and chemoattractants, are often absent from in vitro studies. 

In this thesis, exogenous galectin-3 did not significantly influence murine wound healing, 

re-epithelialization or inflammation. Treatment of full-thickness excisional wounds with 

recombinant human galectin-3, delivered by an electrospun gelatin scaffold or topically applied, 

did not delay cutaneous wound healing in vivo after 9 days. Galectin-3 treatment did not affect 

epithelial tongue length or thickness at days 7 or 9 post-wounding. Arginase I-positive cell 

density was also unaffected by exogenous galectin-3 treatment. As such, galectin-3 in a 

recombinant, extracellular presence may not be an effective therapeutic for the clinical treatment 

of chronic skin wounds. Future experiments may assess the efficacy of other bioactive 

constituents, such as TGF-b and IL-4,51,52 in shifting the chronic wound microenvironment from 

pro-inflammatory to pro-fibrotic.53 

 

4.4 Future Directions 

4.4.1 Improving 3D Printed Scaffolds 

 Collagen protein scaffolds were printed from a high concentration type I collagen bioink. 

The Young’s modulus of the bioink, reported by Advanced Biomatrix, was approximately 1050 

Pa after 30 min in situ gelation. In future studies, the softness of this gel could be tuned by 

mixing the collagen bioink with a second component to increase scaffold stiffness. For instance, 

by adding methacrylated type I bovine collagen bioink, gels could be prepared at various 

concentrations and UV crosslinked after printing to provide tunable gel stiffness. Increasing in 

situ gelation may affect ASC bioactivity on the scaffolds and improve cell adhesion, spreading 

and proliferation.  

 Osteo-inductivity of synthetic PCL scaffolds should be investigated further. Future 

experiments employing fusion printed PCL scaffolds should investigate improving scaffold 

biocompatibility via mineral functionalization. For instance, PCL scaffolds containing mineral 
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additives, such as Bio-Oss (BO) or decellularized bone matrix (DCB), have demonstrated 

enhanced calcium continent, collagen I deposition, osteocalcin expression of ASCs after 3 

weeks.54 Improving the osteo-inductive properties of PCL scaffolds might improve their efficacy 

in tissue engineering applications. A second future direction to improve printed PCL scaffold 

efficacy is by employing a PCL composite. For instance, future work should study 

photocrosslinkable polycaprolactone dimethylacrylate (PCLDMA) and poly(ethylene glycol) 

diacrylate (PEGDA), which can be mixed together to prepare an ink for ink-jet 3D printing.11 

This PCLDMA/PEGDA ink has been shown to improve material properties and the quality of 

the resultant scaffolds.11 However, a nitrogen atmosphere is needed during printing, thus our 

current bioprinter set-up would require modification. 

 

4.4.2 Improving Electrospun Scaffolds 

 Research in our lab has previously demonstrated that electrospun galectin-3/gelatin 

scaffolds were biocompatible in vitro; electrospun scaffolds supported the adhesion, 

proliferation, and fibronectin secretion of human dermal fibroblasts.55 Electrospun galectin-

3/gelatin scaffolds generated in this thesis exhibited fibers within the desired 100-200 nm 

diameter range, but were densely packed. Within a TE scaffold, large pore sizes are necessary to 

ensure the penetration of cells.56,57 One technique to improve scaffold pore size is to co-

electrospin polymer fibers with sacrificial fibers that can subsequently be removed.58 For 

instance, the co-electrospinning of gelatin scaffolds with sacrificial polyethylene glycol fibers 

has been shown to generate pores ranging 10-100 μm in diameter.39 Likewise, poly-ethylene 

oxide (PEO) is another sacrificial material candidate as it is highly water soluble, facilitating 

easy removal following gelatin crosslinking.58 This method has been employed for the blend 

electrospinning of a collagen/PCL scaffold with PEO as the sacrificial fiber component. Soaking 

the scaffold in water, dissolved PEO fibers, resulting in a scaffold with improved void pores for 

cell infiltration.59 This scaffold design demonstrated complete infiltration of scaffolds after 4 

weeks in a model of neoangiogenesis in rats.59 Moreover, micropores can be generated by simply 

piercing the electrospun scaffold with a micro-diameter needle. For instance, using an 

acupuncture needle, 160 μm pores were created in a 70:30 collagen/PCL electrospun 

scaffold.60,61 When implanted into full-thickness skin wounds on the backs of Sprague-Dawley 

rats, the microporous scaffolds promoted faster skin regeneration in vivo than unprocessed 
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electrospun scaffolds.60 Pre-seeding of these microporous scaffolds with fibroblasts further 

promoted tissue regeneration following wounding.61 In comparison to other methods for 

increasing scaffold pore size, the generation of a stamp/press device with a defined needle 

diameter and scaffold piercing capabilities offers a technically straightforward and cost-effective 

approach for introducing organized and reproducible micropores into electrospun scaffolds. 

Improving porosity in the electrospun scaffolds could enhance cell infiltration in vivo during 

murine wound healing, facilitating fibrosis, vascularization, and re-epithelialization. 

 

4.4.3 ASC Differentiation 

 ASC multipotency has been widely explored, leading to the generation of various 

classifications of the cells including adipose-derived stem cells (ADSCs), adipose-derived adult 

stem cells, adipose-derived mesenchymal stem cells (AD-MSCs), adipose MSCs (AMSCs), and 

adipose stromal/stem cells (ASCs). To avoid further confusion, the International Society for 

Cellular Therapy proposed classifying all plastic-adherent cells derived from mesenchymal 

tissues and showing multipotency as mesenchymal stromal cells, regardless of tissue source. The 

term stem cell should be reserved for cells showing definitive stem cell characteristics, including 

adherence to tissue culture plastic, multipotency, and long-term self-renewal capacity.62 Future 

experiments should study the culturing conditions which will enhance the differentiation 

potential of ASCs on 3D printed scaffolds. This potentially might be achieved through the co-

culturing of ASCs with differentiated cells, for example fibroblasts,63 chondrocytes,64 endothelial 

cells,65 or Schwann cells.66 

 

4.4.4 Establishing In Vitro and In Vivo Effects of Galectin-3 

  This thesis has demonstrated that treatment of murine wounds with recombinant human 

galectin-3, delivered by an electrospun scaffold or topically applied, did not statistically 

influence wound healing kinetics, re-epithelialization, or M2 macrophage number. 

The lyophilized protein used in this study has been tested for in vitro bioactivity using 

rabbit erythrocytes to evaluate galectin-3-mediated agglutination.67 Galectin-3 bioactivity has 

also been confirmed by studying cell viability following treatment of acute T-cell leukemia cell 

lines with galectin-3, a treatment known to induce apoptosis in T-cells.47,68 
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The findings of this thesis suggest galectin-3 in an exogenous form does not influence 

acute wound healing processes. Research from our laboratory has shown that galectin-3 

knockout mice display closure kinetics of full thickness excisional wounds comparable to that of 

wildtype groups.69 Moreover, the bioactivity of galectin-3 is possibly influenced by post-

translational modifications, including cleavage and phosphorylation of the protein.70 Cleavage of 

galectin-3 by MMPs, prostate-specific antigen (PSA), and parasite-originating proteases has been 

shown to produce intact carbohydrate-recognition domain and N-terminal peptides of variable 

sizes that retained lectin binding activity but lost multivalence.70,71 Moreover, phosphorylation of 

serine and tyrosine by Abelson tyrosine kinase (c-Abl), cyclin-dependent kinase inhibitor (CKI), 

and glycogen synthase kinase-3 beta (GSK-3β) could regulate galectin-3 localization and 

associated signal transduction.70,72 Thus, galectin-3 contains several domains through which 

protein multivalence, localization, and ligand interactions can be modified; absence of these 

modifications may render recombinant human galectin-3 inactive in the extracellular 

environment. 

As previously discussed, interleukin 4 (IL-4) and IL-13 treatment of bone marrow 

derived macrophages from galectin-3 knockout mice resulted in reduced arginase I activity.48 In 

vitro analysis of exogenous galectin-3 is required to better understand the influence of the protein 

on macrophage polarization in a controlled experimental environment. THP-1, an immortalized 

monocyte-like cell line, could be employed to identify the effects of exogenous recombinant 

human galectin-3 on upregulating M2 macrophage markers, including TGF-β and the mannose 

receptor in human monocytes.48,73 Such experiments might indicate whether galectin-3 can direct 

monocyte differentiation towards an M2 phenotype, and under which treatment concentrations 

galectin-3 bioactivity is optimized.49,74 Once the bioactivity of galectin-3 is better understood in 

vitro, investigation of its role in vivo via topical delivery could once again be pursued. If 

galectin-3 does influence M2 macrophage density in vivo, future work should also investigate the 

role of galectin-3 at various time points post-wounding, given that galectin-3 expression is 

highest day 1 following wounding in wildtype mice.75 
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4.5 Limitations of Results 

4.5.1 Human Adipose Derived Stem/Stromal Cells 

 In this thesis, human adipose derived stem/stromal cells (ASCs) were cultured onto 3D 

printed scaffolds to study material biocompatibility and the influence of a scaffold on ASC 

lineage commitment. Initially known as processed lipoaspirate cells or PLA cells,76 ASCs can be 

isolated from human lipoaspirates and, similar to mesenchymal stem cells (MSCs), can be 

differentiated in vitro using lineage-specific factors toward osteogenic, adipogenic, myogenic, 

and chondrogenic phenotypes.29 Adipose tissue is easily isolated by tissue resection, ultrasonic-

assisted lipoplasty, syringe extraction, or suction-assisted lipoplasty (commonly known as 

liposuction).77 From adipose tissue, the stromal vascular fraction (SVF), composed of red blood 

cells, fibroblasts, endothelial cells, smooth muscle cells, pericytes and pre-adipocytes, can be 

isolated using enzymatic digestion.78,79 Further processing and culturing of the SVF eliminates 

contaminating cell populations and results in an adherent, multi-potent pre-adipocyte population. 

Due to their availability and multi-potency, ASCs have been employed in a variety of 

regenerative models. In vitro bone tissue regeneration has been demonstrated using porous 

poly(lactic-co-glycolic)acid-β-tricalcium phosphate (PLGA-β-TCP) scaffolds,80 polylactic acid 

(PLA)/β-tricalcium phosphate (β-TCP) composite scaffolds,81 and polycaprolactone-tricalcium 

phosphate (mPCL-TCP) scaffolds with matrix components, either fibrin glue or lyophilized 

collagen.82 Similarly, in vitro cartilage tissue regeneration,83–85 adipose differentiation,29,86,87 and 

epidermal differentiation88–90 have also been validated. 

Despite previous findings, differentiation of multiple lineages was not observed in this 

thesis. ASCs in this study were derived from human adipose tissue originating from the lower 

limb of a 67-year-old woman, and lineage appeared already committed towards an adipogenic 

phenotype. This finding was independent of ASC treatment with lineage-specific factors for 

osteogenic commitment, such as glycerol 2-phosphate (commonly known as β-glycerophosphate; 

BGP) and ascorbic acid 2-phosphate (Asc 2-P). This result was unexpected given that BGP and 

Asc 2-P are well established osteogenic lineage inducing factors. Reports have shown that MSC 

isolated from bone marrow exhibit rapid growth and osteogenic differentiation following 

treatment with 10 mM BGP.91 Likewise Asc 2-P treatment significantly improved nascent cell 

growth at both high and low concentrations (0.25-1.0 mM), and also increased expression of 

osteoblast differentiation markers, including collagen synthesis and alkaline phosphatase 
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activity.92 Osteogenic differentiation has been noted to take 4-6 weeks in previous studies, 

therefore the 3 week experimental time point of this thesis may have been insufficient. 

Moreover, this thesis employed ASCs of pathological origin, whereas other reports employed 

healthy human or animal ASCs. Thus, future work is needed to elucidate the differentiation 

potential of ASCs originating from pathological, amputated limbs in order to justify their use in 

regenerative medicine. 

 

4.5.2 Murine Model of Wound Healing 

 Human chronic skin wounds represent a complex pathological environment with 

observed heterogeneity among populations. Chronic wounds can arise from a number of factors 

including malnutrition, advanced age, infection, diabetes, vascular insufficiency, prolonged 

pressure and edema contribute to amplified inflammation and a non-healing wound.41 Thus, a 

major limitation to this thesis is the employment of an animal model that cannot fully imitate the 

complexity of human chronic wounds.93 This study utilizes a wild type mouse (Mus musculus) 

model of full-thickness dermal wound healing. While murine models are simple to maintain and 

economically accessible, important differences between murine and human skin healing exist.94 

Mice have small bodies which limits modeling of wound sizes relevant for humans, and also 

have a short life expectancy which limits studies of “chronic” wounds in mice.95,96 

With regards to wound healing, murine wounds close mainly by contraction via the 

subcutaneous panniculus carnosus, a layer of striated muscle.97 This contrasts with human 

wounds closure which is achieved through cell migration over granulation tissue and re-

epithelialization. In the dermis and epidermis, human and murine skin have unvarying layers of 

cells, however these layers greatly diverge in physiology. While human skin is over 100 μm 

thick, firm, and adherent to basal tissues, murine skin is less than 25 μm thick and is unattached 

and loose.97–99 The epidermis is comprised of 5-10 cell layers in humans but only 2-3 in mice.100 

Humans and mice also differ in the role of specific niches of skin stem cells. For instance, 

murine skin is densely populated by hair follicles while the majority of human epidermis is 

classified as interfollicular, exhibiting sparse and uneven hair follicle distribution.97,100  In a 

study of split-thickness skin grafting, scalp donor sites rich in hair follicles healed faster than 

thigh sites which had fewer hair follicles.101 This difference is due to the important roles hair 

follicle stem cells play in cutaneous repair,102–104 where up to a quarter of newly formed 
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epidermis is derived from hair follicle stem or progenitor cells.102 Overall, caution must be 

exercised when translating murine findings to pre-clinical studies. 

Moreover, in this thesis, the validity of the mouse studies conducted was limited by the 

low number of mice used for each condition and at each time point. Three mice were sacrificed 

at day 3 post-wounding, three mice at day 7, and two mice at day 9. The inclusion of a larger 

sample size of mice may have eliminated the significant variability observed in the study, 

thereby improving the power of the study. All mice were age and sex matched, in addition to 

being wildtype. Thus, this model of healing was unchallenged and does not accurately reflect the 

impeded healing associated with human chronic wounds. Additionally, observation of wound 

area for closure kinetics was affected by the overlaying eschar which concealed healing wounds. 

In calculations of the wound area, the eschar area was also included, thus measured wound areas 

could have appeared larger. In order to directly observe the underlying healing tissues, it would 

have been necessary to remove the eschar. However, this manipulation could potentially disrupt 

the underlying tissues and thus was not executed. 

 

 4.6 Conclusion 
 This thesis has demonstrated fabrication of three different biomaterial scaffolds for tissue 

engineering applications, three-dimensional reverse embedding of collagen scaffolds, polymer 

fusion printing of PCL scaffolds, and electrospinning of gelatin scaffolds. Bioprinting of soft 

collagen scaffolds required embedding the print within a secondary gelatin support slurry to 

facilitate in situ gelation. Preparation and validation of the gelatin support slurry demonstrated 

that gelatin microparticle morphology was dependent on mechanical blend treatment, and that 

the prepared slurry behaved as a Bingham plastic fluid. Collagen scaffolds of rectilinear or 

hexagonal infill patterning stimulated ASC fibronectin deposition. Rectilinear PCL scaffolds 

promoted ASC adhesion, spreading, and proliferation responses. While collagen and PCL 

scaffolds exhibit in vitro biocompatibility, ASC phenotype was uninfluenced by 3D versus 2D 

culturing conditions, collagen or PCL scaffold material, or rectilinear versus hexagonal 

geometric cues. These scaffolds should be investigated further regarding in vivo efficacy for RM 

applications. Gelatin polymer blended with recombinant galectin-3 was electrospun into a 

protein delivery scaffold and employed in a murine model of cutaneous wound healing. 

Treatment of wounds with the galectin-3/gelatin scaffolds, or with topical galectin-3, did not 
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enhance wound closure, re-epithelialization, or influence macrophage phenotypes in the wound. 

Future directions include elucidating the conditions where galectin-3 might modulate 

inflammation in vivo and considering other target molecules such as TGF-b and IL-4. 
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5 Appendices 

Appendix A: Supplementary Rheological Results 
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Appendix B: G-Code and FFF Files for Scaffolds 
 
Collagen Rectilinear Scaffolds 
; external perimeters extrusion width = 
0.16mm 
; perimeters extrusion width = 0.22mm 
; infill extrusion width = 0.22mm 
; solid infill extrusion width = 0.22mm 
; top infill extrusion width = 0.22mm 
 
 
G21 ; set units to millimeters 
G90 ; use absolute coordinates 
M83 ; use relative distances for 
extrusion 
G1 Z0.160 F180.000 
G1 X12.511 Y-0.145 F180.000 
G1 X12.529 Y1.407 E0.02113 F90.000 
G1 X12.529 Y11.407 E0.13615 
G1 X12.146 Y12.256 E0.01268 
G1 X11.401 Y12.540 E0.01086 
G1 X-1.389 Y12.609 E0.17414 
G1 X-11.395 Y12.609 E0.13623 
G1 X-12.244 Y12.227 E0.01268 
G1 X-12.529 Y11.476 E0.01094 
G1 X-12.529 Y1.468 E0.13626 
G1 X-12.438 Y-11.484 E0.17633 
G1 X-12.050 Y-12.330 E0.01268 
G1 X-11.304 Y-12.609 E0.01084 
G1 X-1.303 Y-12.609 E0.13616 
G1 X11.247 Y-12.597 E0.17086 
F90.000 
G1 X12.095 Y-12.214 E0.01268 
G1 X12.379 Y-11.477 E0.01076 
G1 X12.510 Y-0.169 E0.15396 
G1 X11.185 Y1.616 F180.000 
G1 X11.185 Y11.197 E0.13044 F90.000 
G1 X1.605 Y11.197 E0.13044 
G1 X1.605 Y1.616 E0.13044 
G1 X11.161 Y1.616 E0.13011 
G1 X11.315 Y1.487 F180.000 
G1 X11.315 Y11.327 E0.12595 F90.000 
G1 X1.475 Y11.327 E0.12595 
G1 X1.475 Y1.487 E0.12595 
G1 X11.291 Y1.487 E0.12564 
G1 X11.235 Y1.625 F180.000 
G1 X11.098 Y2.438 F180.000 
G1 X1.712 Y2.438 E0.12780 F90.000 
G1 X1.712 Y3.444 E0.01369 
G1 X11.098 Y3.444 E0.12780 
G1 X11.098 Y4.449 E0.01369 
G1 X1.712 Y4.449 E0.12780 
G1 X1.712 Y5.454 E0.01369 
G1 X11.098 Y5.454 E0.12780 
G1 X11.098 Y6.460 E0.01369 
G1 X1.712 Y6.460 E0.12780 
G1 X1.712 Y7.465 E0.01369 
G1 X11.098 Y7.465 E0.12780 
G1 X11.098 Y8.470 E0.01369 
G1 X1.712 Y8.470 E0.12780 
G1 X1.712 Y9.476 E0.01369 
G1 X11.098 Y9.476 E0.12780 
G1 X11.098 Y10.481 E0.01369 
G1 X1.712 Y10.481 E0.12780 
G1 X0.395 Y0.992 F180.000 
G1 X-0.003 Y0.992 F180.000 
G1 X0.000 Y1.061 F180.000 

G1 X-0.395 Y1.061 F180.000 
G1 X-1.605 Y1.685 F180.000 
G1 X-1.605 Y11.266 E0.13044 F90.000 
G1 X-11.185 Y11.266 E0.13044 
G1 X-11.185 Y1.685 E0.13044 
G1 X-1.629 Y1.685 E0.13011 
G1 X-1.475 Y1.556 F180.000 
G1 X-1.475 Y11.396 E0.12595 F90.000 
G1 X-11.315 Y11.396 E0.12595 
G1 X-11.315 Y1.556 E0.12595 
G1 X-1.499 Y1.556 E0.12564 
G1 X-1.555 Y1.694 F180.000 
G1 X-1.692 Y2.507 F180.000 
G1 X-11.078 Y2.507 E0.12780 F90.000 
G1 X-11.078 Y3.513 E0.01369 
G1 X-1.692 Y3.513 E0.12780 
G1 X-1.692 Y4.518 E0.01369 
G1 X-11.078 Y4.518 E0.12780 
G1 X-11.078 Y5.523 E0.01369 
G1 X-1.692 Y5.523 E0.12780 
G1 X-1.692 Y6.529 E0.01369 
G1 X-11.078 Y6.529 E0.12780 
G1 X-11.078 Y7.534 E0.01369 
G1 X-1.692 Y7.534 E0.12780 
G1 X-1.692 Y8.539 E0.01369 
G1 X-11.078 Y8.539 E0.12780 
G1 X-11.078 Y9.545 E0.01369 
G1 X-1.692 Y9.545 E0.12780 
G1 X-1.692 Y10.550 E0.01369 
G1 X-11.078 Y10.550 E0.12780 
G1 X-0.981 Y0.476 F180.000 
G1 X-0.369 Y0.045 F180.000 
G1 X-0.035 Y-0.768 F180.000 
G1 X-0.035 Y-0.792 F180.000 
G1 X-0.304 Y-1.061 F180.000 
G1 X-1.514 Y-11.266 F180.000 
G1 X-1.514 Y-1.685 E0.13044 F90.000 
G1 X-11.095 Y-1.685 E0.13044 
G1 X-11.095 Y-11.266 E0.13044 
G1 X-1.538 Y-11.266 E0.13011 
G1 X-1.384 Y-11.396 F180.000 
G1 X-1.384 Y-1.556 E0.12595 F90.000 
G1 X-11.224 Y-1.556 E0.12595 
G1 X-11.224 Y-11.396 E0.12595 
G1 X-1.408 Y-11.396 E0.12564 
G1 X-1.464 Y-11.257 F180.000 
G1 X-1.601 Y-10.444 F180.000 
G1 X-10.987 Y-10.444 E0.12780 
F90.000 
G1 X-10.987 Y-9.438 E0.01369 
G1 X-1.601 Y-9.438 E0.12780 
G1 X-1.601 Y-8.433 E0.01369 
G1 X-10.987 Y-8.433 E0.12780 
G1 X-10.987 Y-7.428 E0.01369 
G1 X-1.601 Y-7.428 E0.12780 
G1 X-1.601 Y-6.423 E0.01369 
G1 X-10.987 Y-6.423 E0.12780 
G1 X-10.987 Y-5.417 E0.01369 
G1 X-1.601 Y-5.417 E0.12780 
G1 X-1.601 Y-4.412 E0.01369 
G1 X-10.987 Y-4.412 E0.12780 
G1 X-10.987 Y-3.407 E0.01369 
G1 X-1.601 Y-3.407 E0.12780 
G1 X-1.601 Y-2.401 E0.01369 

G1 X-10.987 Y-2.401 E0.12780 
G1 X-0.304 Y-11.890 F180.000 
G1 X-0.023 Y-12.171 F180.000 
G1 X-0.002 Y-13.297 F180.000 
G1 X0.831 Y-12.464 F180.000 
G1 X11.036 Y-11.254 F180.000 
G1 X11.036 Y-1.673 E0.13044 F90.000 
G1 X1.455 Y-1.673 E0.13044 
G1 X1.455 Y-11.254 E0.13044 
G1 X11.012 Y-11.254 E0.13011 
G1 X11.166 Y-11.384 F180.000 
G1 X11.166 Y-1.544 E0.12595 F90.000 
G1 X1.326 Y-1.544 E0.12595 
G1 X1.326 Y-11.384 E0.12595 
G1 X11.142 Y-11.384 E0.12564 
G1 X11.086 Y-11.245 F180.000 
G1 X10.949 Y-10.432 F180.000 
G1 X1.562 Y-10.432 E0.12780 F90.000 
G1 X1.562 Y-9.426 E0.01369 
G1 X10.949 Y-9.426 E0.12780 
G1 X10.949 Y-8.421 E0.01369 
G1 X1.562 Y-8.421 E0.12780 
G1 X1.562 Y-7.416 E0.01369 
G1 X10.949 Y-7.416 E0.12780 
G1 X10.949 Y-6.410 E0.01369 
G1 X1.562 Y-6.410 E0.12780 
G1 X1.562 Y-5.405 E0.01369 
G1 X10.949 Y-5.405 E0.12780 
G1 X10.949 Y-4.400 E0.01369 
G1 X1.562 Y-4.400 E0.12780 
G1 X1.562 Y-3.395 E0.01369 
G1 X10.949 Y-3.395 E0.12780 
G1 X10.949 Y-2.389 E0.01369 
G1 X1.562 Y-2.389 E0.12780 
G1 Z0.260 F180.000 
G1 X11.660 Y-0.464 F180.000 
G1 X12.042 Y-0.081 F180.000 
G1 X12.319 Y-0.103 F180.000 
G1 X12.513 Y0.050 F180.000 
G1 X12.529 Y1.407 E0.01266 F180.000 
G1 X12.529 Y11.407 E0.09329 
G1 X12.146 Y12.256 E0.00869 
G1 X11.401 Y12.540 E0.00744 
G1 X-1.389 Y12.609 E0.11932 
G1 X-11.395 Y12.609 E0.09335 
G1 X-12.244 Y12.227 E0.00869 
G1 X-12.529 Y11.476 E0.00750 
G1 X-12.529 Y1.468 E0.09336 
G1 X-12.438 Y-11.484 E0.12082 
G1 X-12.050 Y-12.330 E0.00869 
G1 X-11.304 Y-12.609 E0.00743 
G1 X-1.303 Y-12.609 E0.09330 
G1 X11.247 Y-12.597 E0.11708 
F180.000 
G1 X12.095 Y-12.214 E0.00869 
G1 X12.379 Y-11.477 E0.00737 
G1 X12.513 Y0.026 E0.10732 
G1 X12.319 Y-0.103 F180.000 
G1 X12.319 Y-0.103 F180.000 
G1 X11.809 Y0.407 F180.000 
G1 X11.145 Y1.656 F180.000 
G1 X11.145 Y11.157 E0.12161 
F180.000 
G1 X1.645 Y11.157 E0.12161 
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G1 X1.645 Y1.656 E0.12161 
G1 X11.121 Y1.656 E0.12130 
G1 X11.315 Y1.487 F180.000 
G1 X11.315 Y11.327 E0.08679 
F180.000 
G1 X1.475 Y11.327 E0.08679 
G1 X1.475 Y1.487 E0.08679 
G1 X11.291 Y1.487 E0.08657 
G1 X11.235 Y1.625 F180.000 
G1 X2.321 Y1.797 F180.000 
G1 X2.321 Y11.036 E0.11826 F180.000 
G1 X3.326 Y11.036 E0.01287 
G1 X3.326 Y1.797 E0.11826 
G1 X4.331 Y1.797 E0.01287 
G1 X4.331 Y11.036 E0.11826 
G1 X5.337 Y11.036 E0.01287 
G1 X5.337 Y1.797 E0.11826 
G1 X6.342 Y1.797 E0.01287 
G1 X6.342 Y11.036 E0.11826 
G1 X7.347 Y11.036 E0.01287 
G1 X7.347 Y1.797 E0.11826 
G1 X8.353 Y1.797 E0.01287 
G1 X8.353 Y11.036 E0.11826 
G1 X9.358 Y11.036 E0.01287 
G1 X9.358 Y1.797 E0.11826 
G1 X10.363 Y1.797 E0.01287 
G1 X10.363 Y11.036 E0.11826 
G1 X0.395 Y0.992 F180.000 
G1 X-0.003 Y0.992 F180.000 
G1 X0.000 Y1.061 F180.000 
G1 X-0.395 Y1.061 F180.000 
G1 X-1.645 Y1.725 F180.000 
G1 X-1.645 Y11.226 E0.12161 
F180.000 
G1 X-11.145 Y11.226 E0.12161 
G1 X-11.145 Y1.725 E0.12161 
G1 X-1.669 Y1.725 E0.12130 
G1 X-1.475 Y1.556 F180.000 
G1 X-1.475 Y11.396 E0.08679 
F180.000 
G1 X-11.315 Y11.396 E0.08679 
G1 X-11.315 Y1.556 E0.08679 
G1 X-1.499 Y1.556 E0.08657 
G1 X-1.555 Y1.694 F180.000 
G1 X-10.469 Y1.866 F180.000 
G1 X-10.469 Y11.105 E0.11826 
F180.000 
G1 X-9.464 Y11.105 E0.01287 
G1 X-9.464 Y1.866 E0.11826 
G1 X-8.459 Y1.866 E0.01287 
G1 X-8.459 Y11.105 E0.11826 
G1 X-7.453 Y11.105 E0.01287 
G1 X-7.453 Y1.866 E0.11826 
G1 X-6.448 Y1.866 E0.01287 
G1 X-6.448 Y11.105 E0.11826 
G1 X-5.443 Y11.105 E0.01287 
G1 X-5.443 Y1.866 E0.11826 
G1 X-4.438 Y1.866 E0.01287 
G1 X-4.438 Y11.105 E0.11826 
G1 X-3.432 Y11.105 E0.01287 
G1 X-3.432 Y1.866 E0.11826 
G1 X-2.427 Y1.866 E0.01287 
G1 X-2.427 Y11.105 E0.11826 
G1 X-0.981 Y0.476 F180.000 
G1 X-0.369 Y0.045 F180.000 
G1 X-0.035 Y-0.768 F180.000 
G1 X-0.035 Y-0.792 F180.000 
G1 X-0.304 Y-1.061 F180.000 
G1 X-1.554 Y-11.226 F180.000 
G1 X-1.554 Y-1.725 E0.12161 F180.000 

G1 X-11.054 Y-1.725 E0.12161 
G1 X-11.054 Y-11.226 E0.12161 
G1 X-1.578 Y-11.226 E0.12130 
G1 X-1.384 Y-11.396 F180.000 
G1 X-1.384 Y-1.556 E0.08679 F180.000 
G1 X-11.224 Y-1.556 E0.08679 
G1 X-11.224 Y-11.396 E0.08679 
G1 X-1.408 Y-11.396 E0.08657 
G1 X-1.464 Y-11.257 F180.000 
G1 X-10.379 Y-11.085 F180.000 
G1 X-10.379 Y-1.846 E0.11826 
F180.000 
G1 X-9.373 Y-1.846 E0.01287 
G1 X-9.373 Y-11.085 E0.11826 
G1 X-8.368 Y-11.085 E0.01287 
G1 X-8.368 Y-1.846 E0.11826 
G1 X-7.363 Y-1.846 E0.01287 
G1 X-7.363 Y-11.085 E0.11826 
G1 X-6.357 Y-11.085 E0.01287 
G1 X-6.357 Y-1.846 E0.11826 
G1 X-5.352 Y-1.846 E0.01287 
G1 X-5.352 Y-11.085 E0.11826 
G1 X-4.347 Y-11.085 E0.01287 
G1 X-4.347 Y-1.846 E0.11826 
G1 X-3.341 Y-1.846 E0.01287 
G1 X-3.341 Y-11.085 E0.11826 
G1 X-2.336 Y-11.085 E0.01287 
G1 X-2.336 Y-1.846 E0.11826 
G1 X-0.304 Y-11.890 F180.000 
G1 X-0.023 Y-12.171 F180.000 
G1 X-0.002 Y-13.297 F180.000 
G1 X0.831 Y-12.464 F180.000 
G1 X10.996 Y-11.214 F180.000 
G1 X10.996 Y-1.713 E0.12161 
F180.000 
G1 X1.495 Y-1.713 E0.12161 
G1 X1.495 Y-11.214 E0.12161 
G1 X10.972 Y-11.214 E0.12130 
G1 X11.166 Y-11.384 F180.000 
G1 X11.166 Y-1.544 E0.08679 
F180.000 
G1 X1.326 Y-1.544 E0.08679 
G1 X1.326 Y-11.384 E0.08679 
G1 X11.142 Y-11.384 E0.08657 
G1 X11.086 Y-11.245 F180.000 
G1 X2.171 Y-11.073 F180.000 
G1 X2.171 Y-1.834 E0.11826 F180.000 
G1 X3.176 Y-1.834 E0.01287 
G1 X3.176 Y-11.073 E0.11826 
G1 X4.182 Y-11.073 E0.01287 
G1 X4.182 Y-1.834 E0.11826 
G1 X5.187 Y-1.834 E0.01287 
G1 X5.187 Y-11.073 E0.11826 
G1 X6.192 Y-11.073 E0.01287 
G1 X6.192 Y-1.834 E0.11826 
G1 X7.198 Y-1.834 E0.01287 
G1 X7.198 Y-11.073 E0.11826 
G1 X8.203 Y-11.073 E0.01287 
G1 X8.203 Y-1.834 E0.11826 
G1 X9.208 Y-1.834 E0.01287 
G1 X9.208 Y-11.073 E0.11826 
G1 X10.214 Y-11.073 E0.01287 
G1 X10.214 Y-1.834 E0.11826 
G1 Z0.360 F180.000 
G1 X11.660 Y-0.464 F180.000 
G1 X11.660 Y-0.028 F180.000 
G1 X11.809 Y-0.041 F180.000 
G1 X11.809 Y0.407 F180.000 
G1 X11.145 Y1.656 F180.000 

G1 X11.145 Y11.157 E0.12161 
F180.000 
G1 X1.645 Y11.157 E0.12161 
G1 X1.645 Y1.656 E0.12161 
G1 X11.121 Y1.656 E0.12130 
G1 X11.315 Y1.487 F180.000 
G1 X11.315 Y11.327 E0.08679 
F180.000 
G1 X1.475 Y11.327 E0.08679 
G1 X1.475 Y1.487 E0.08679 
G1 X11.291 Y1.487 E0.08657 
G1 X11.235 Y1.625 F180.000 
G1 X11.025 Y2.438 F180.000 
G1 X1.786 Y2.438 E0.11826 F180.000 
G1 X1.786 Y3.444 E0.01287 
G1 X11.025 Y3.444 E0.11826 
G1 X11.025 Y4.449 E0.01287 
G1 X1.786 Y4.449 E0.11826 
G1 X1.786 Y5.454 E0.01287 
G1 X11.025 Y5.454 E0.11826 
G1 X11.025 Y6.460 E0.01287 
G1 X1.786 Y6.460 E0.11826 
G1 X1.786 Y7.465 E0.01287 
G1 X11.025 Y7.465 E0.11826 
G1 X11.025 Y8.470 E0.01287 
G1 X1.786 Y8.470 E0.11826 
G1 X1.786 Y9.476 E0.01287 
G1 X11.025 Y9.476 E0.11826 
G1 X11.025 Y10.481 E0.01287 
G1 X1.786 Y10.481 E0.11826 
G1 X0.395 Y0.992 F180.000 
G1 X-0.003 Y0.992 F180.000 
G1 X0.000 Y1.061 F180.000 
G1 X-0.395 Y1.061 F180.000 
G1 X-1.645 Y1.725 F180.000 
G1 X-1.645 Y11.226 E0.12161 
F180.000 
G1 X-11.145 Y11.226 E0.12161 
G1 X-11.145 Y1.725 E0.12161 
G1 X-1.669 Y1.725 E0.12130 
G1 X-1.475 Y1.556 F180.000 
G1 X-1.475 Y11.396 E0.08679 
F180.000 
G1 X-11.315 Y11.396 E0.08679 
G1 X-11.315 Y1.556 E0.08679 
G1 X-1.499 Y1.556 E0.08657 
G1 X-1.555 Y1.694 F180.000 
G1 X-1.766 Y2.507 F180.000 
G1 X-11.005 Y2.507 E0.11826 
F180.000 
G1 X-11.005 Y3.513 E0.01287 
G1 X-1.766 Y3.513 E0.11826 
G1 X-1.766 Y4.518 E0.01287 
G1 X-11.005 Y4.518 E0.11826 
G1 X-11.005 Y5.523 E0.01287 
G1 X-1.766 Y5.523 E0.11826 
G1 X-1.766 Y6.529 E0.01287 
G1 X-11.005 Y6.529 E0.11826 
G1 X-11.005 Y7.534 E0.01287 
G1 X-1.766 Y7.534 E0.11826 
G1 X-1.766 Y8.539 E0.01287 
G1 X-11.005 Y8.539 E0.11826 
G1 X-11.005 Y9.545 E0.01287 
G1 X-1.766 Y9.545 E0.11826 
G1 X-1.766 Y10.550 E0.01287 
G1 X-11.005 Y10.550 E0.11826 
G1 X-0.981 Y0.476 F180.000 
G1 X-0.369 Y0.045 F180.000 
G1 X-0.035 Y-0.768 F180.000 
G1 X-0.035 Y-0.792 F180.000 
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G1 X-0.304 Y-1.061 F180.000 
G1 X-1.554 Y-11.226 F180.000 
G1 X-1.554 Y-1.725 E0.12161 F180.000 
G1 X-11.054 Y-1.725 E0.12161 
G1 X-11.054 Y-11.226 E0.12161 
G1 X-1.578 Y-11.226 E0.12130 
G1 X-1.384 Y-11.396 F180.000 
G1 X-1.384 Y-1.556 E0.08679 F180.000 
G1 X-11.224 Y-1.556 E0.08679 
G1 X-11.224 Y-11.396 E0.08679 
G1 X-1.408 Y-11.396 E0.08657 
G1 X-1.464 Y-11.257 F180.000 
G1 X-1.675 Y-10.444 F180.000 
G1 X-10.914 Y-10.444 E0.11826 
F180.000 
G1 X-10.914 Y-9.438 E0.01287 
G1 X-1.675 Y-9.438 E0.11826 
G1 X-1.675 Y-8.433 E0.01287 
G1 X-10.914 Y-8.433 E0.11826 
G1 X-10.914 Y-7.428 E0.01287 
G1 X-1.675 Y-7.428 E0.11826 
G1 X-1.675 Y-6.423 E0.01287 
G1 X-10.914 Y-6.423 E0.11826 
G1 X-10.914 Y-5.417 E0.01287 
G1 X-1.675 Y-5.417 E0.11826 
G1 X-1.675 Y-4.412 E0.01287 
G1 X-10.914 Y-4.412 E0.11826 
G1 X-10.914 Y-3.407 E0.01287 
G1 X-1.675 Y-3.407 E0.11826 
G1 X-1.675 Y-2.401 E0.01287 
G1 X-10.914 Y-2.401 E0.11826 
G1 X-0.304 Y-11.890 F180.000 
G1 X-0.023 Y-12.171 F180.000 
G1 X-0.002 Y-13.297 F180.000 
G1 X0.831 Y-12.464 F180.000 
G1 X10.996 Y-11.214 F180.000 
G1 X10.996 Y-1.713 E0.12161 
F180.000 
G1 X1.495 Y-1.713 E0.12161 
G1 X1.495 Y-11.214 E0.12161 
G1 X10.972 Y-11.214 E0.12130 
G1 X11.166 Y-11.384 F180.000 
G1 X11.166 Y-1.544 E0.08679 
F180.000 
G1 X1.326 Y-1.544 E0.08679 
G1 X1.326 Y-11.384 E0.08679 
G1 X11.142 Y-11.384 E0.08657 
G1 X11.086 Y-11.245 F180.000 
G1 X10.875 Y-10.432 F180.000 
G1 X1.636 Y-10.432 E0.11826 
F180.000 
G1 X1.636 Y-9.426 E0.01287 
G1 X10.875 Y-9.426 E0.11826 
G1 X10.875 Y-8.421 E0.01287 
G1 X1.636 Y-8.421 E0.11826 
G1 X1.636 Y-7.416 E0.01287 
G1 X10.875 Y-7.416 E0.11826 
G1 X10.875 Y-6.410 E0.01287 
G1 X1.636 Y-6.410 E0.11826 
G1 X1.636 Y-5.405 E0.01287 
G1 X10.875 Y-5.405 E0.11826 
G1 X10.875 Y-4.400 E0.01287 
G1 X1.636 Y-4.400 E0.11826 
G1 X1.636 Y-3.395 E0.01287 
G1 X10.875 Y-3.395 E0.11826 
G1 X10.875 Y-2.389 E0.01287 
G1 X1.636 Y-2.389 E0.11826 
G1 Z0.460 F180.000 
G1 X11.660 Y-0.464 F180.000 
G1 X11.660 Y-0.028 F180.000 

G1 X11.809 Y-0.041 F180.000 
G1 X11.809 Y0.407 F180.000 
G1 X11.145 Y1.656 F180.000 
G1 X11.145 Y11.157 E0.12161 
F180.000 
G1 X1.645 Y11.157 E0.12161 
G1 X1.645 Y1.656 E0.12161 
G1 X11.121 Y1.656 E0.12130 
G1 X11.315 Y1.487 F180.000 
G1 X11.315 Y11.327 E0.08679 
F180.000 
G1 X1.475 Y11.327 E0.08679 
G1 X1.475 Y1.487 E0.08679 
G1 X11.291 Y1.487 E0.08657 
G1 X11.235 Y1.625 F180.000 
G1 X2.321 Y1.797 F180.000 
G1 X2.321 Y11.036 E0.11826 F180.000 
G1 X3.326 Y11.036 E0.01287 
G1 X3.326 Y1.797 E0.11826 
G1 X4.331 Y1.797 E0.01287 
G1 X4.331 Y11.036 E0.11826 
G1 X5.337 Y11.036 E0.01287 
G1 X5.337 Y1.797 E0.11826 
G1 X6.342 Y1.797 E0.01287 
G1 X6.342 Y11.036 E0.11826 
G1 X7.347 Y11.036 E0.01287 
G1 X7.347 Y1.797 E0.11826 
G1 X8.353 Y1.797 E0.01287 
G1 X8.353 Y11.036 E0.11826 
G1 X9.358 Y11.036 E0.01287 
G1 X9.358 Y1.797 E0.11826 
G1 X10.363 Y1.797 E0.01287 
G1 X10.363 Y11.036 E0.11826 
G1 X0.395 Y0.992 F180.000 
G1 X-0.003 Y0.992 F180.000 
G1 X0.000 Y1.061 F180.000 
G1 X-0.395 Y1.061 F180.000 
G1 X-1.645 Y1.725 F180.000 
G1 X-1.645 Y11.226 E0.12161 
F180.000 
G1 X-11.145 Y11.226 E0.12161 
G1 X-11.145 Y1.725 E0.12161 
G1 X-1.669 Y1.725 E0.12130 
G1 X-1.475 Y1.556 F180.000 
G1 X-1.475 Y11.396 E0.08679 
F180.000 
G1 X-11.315 Y11.396 E0.08679 
G1 X-11.315 Y1.556 E0.08679 
G1 X-1.499 Y1.556 E0.08657 
G1 X-1.555 Y1.694 F180.000 
G1 X-10.469 Y1.866 F180.000 
G1 X-10.469 Y11.105 E0.11826 
F180.000 
G1 X-9.464 Y11.105 E0.01287 
G1 X-9.464 Y1.866 E0.11826 
G1 X-8.459 Y1.866 E0.01287 
G1 X-8.459 Y11.105 E0.11826 
G1 X-7.453 Y11.105 E0.01287 
G1 X-7.453 Y1.866 E0.11826 
G1 X-6.448 Y1.866 E0.01287 
G1 X-6.448 Y11.105 E0.11826 
G1 X-5.443 Y11.105 E0.01287 
G1 X-5.443 Y1.866 E0.11826 
G1 X-4.438 Y1.866 E0.01287 
G1 X-4.438 Y11.105 E0.11826 
G1 X-3.432 Y11.105 E0.01287 
G1 X-3.432 Y1.866 E0.11826 
G1 X-2.427 Y1.866 E0.01287 
G1 X-2.427 Y11.105 E0.11826 
G1 X-0.981 Y0.476 F180.000 

G1 X-0.369 Y0.045 F180.000 
G1 X-0.035 Y-0.768 F180.000 
G1 X-0.035 Y-0.792 F180.000 
G1 X-0.304 Y-1.061 F180.000 
G1 X-1.554 Y-11.226 F180.000 
G1 X-1.554 Y-1.725 E0.12161 F180.000 
G1 X-11.054 Y-1.725 E0.12161 
G1 X-11.054 Y-11.226 E0.12161 
G1 X-1.578 Y-11.226 E0.12130 
G1 X-1.384 Y-11.396 F180.000 
G1 X-1.384 Y-1.556 E0.08679 F180.000 
G1 X-11.224 Y-1.556 E0.08679 
G1 X-11.224 Y-11.396 E0.08679 
G1 X-1.408 Y-11.396 E0.08657 
G1 X-1.464 Y-11.257 F180.000 
G1 X-10.379 Y-11.085 F180.000 
G1 X-10.379 Y-1.846 E0.11826 
F180.000 
G1 X-9.373 Y-1.846 E0.01287 
G1 X-9.373 Y-11.085 E0.11826 
G1 X-8.368 Y-11.085 E0.01287 
G1 X-8.368 Y-1.846 E0.11826 
G1 X-7.363 Y-1.846 E0.01287 
G1 X-7.363 Y-11.085 E0.11826 
G1 X-6.357 Y-11.085 E0.01287 
G1 X-6.357 Y-1.846 E0.11826 
G1 X-5.352 Y-1.846 E0.01287 
G1 X-5.352 Y-11.085 E0.11826 
G1 X-4.347 Y-11.085 E0.01287 
G1 X-4.347 Y-1.846 E0.11826 
G1 X-3.341 Y-1.846 E0.01287 
G1 X-3.341 Y-11.085 E0.11826 
G1 X-2.336 Y-11.085 E0.01287 
G1 X-2.336 Y-1.846 E0.11826 
G1 X-0.304 Y-11.890 F180.000 
G1 X-0.023 Y-12.171 F180.000 
G1 X-0.002 Y-13.297 F180.000 
G1 X0.831 Y-12.464 F180.000 
G1 X10.996 Y-11.214 F180.000 
G1 X10.996 Y-1.713 E0.12161 
F180.000 
G1 X1.495 Y-1.713 E0.12161 
G1 X1.495 Y-11.214 E0.12161 
G1 X10.972 Y-11.214 E0.12130 
G1 X11.166 Y-11.384 F180.000 
G1 X11.166 Y-1.544 E0.08679 
F180.000 
G1 X1.326 Y-1.544 E0.08679 
G1 X1.326 Y-11.384 E0.08679 
G1 X11.142 Y-11.384 E0.08657 
G1 X11.086 Y-11.245 F180.000 
G1 X2.171 Y-11.073 F180.000 
G1 X2.171 Y-1.834 E0.11826 F180.000 
G1 X3.176 Y-1.834 E0.01287 
G1 X3.176 Y-11.073 E0.11826 
G1 X4.182 Y-11.073 E0.01287 
G1 X4.182 Y-1.834 E0.11826 
G1 X5.187 Y-1.834 E0.01287 
G1 X5.187 Y-11.073 E0.11826 
G1 X6.192 Y-11.073 E0.01287 
G1 X6.192 Y-1.834 E0.11826 
G1 X7.198 Y-1.834 E0.01287 
G1 X7.198 Y-11.073 E0.11826 
G1 X8.203 Y-11.073 E0.01287 
G1 X8.203 Y-1.834 E0.11826 
G1 X9.208 Y-1.834 E0.01287 
G1 X9.208 Y-11.073 E0.11826 
G1 X10.214 Y-11.073 E0.01287 
G1 X10.214 Y-1.834 E0.11826 
G1 E-20 F3000 
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G1 Z150 F200 S1  
G1 X20 Y40 F12000 
; filament used = 35.4mm (0.0cm3) 
 
; avoid_crossing_perimeters = 1 
; bed_shape = -60x-65,60x-65,60x65,-
60x65 
; bed_temperature = 0 
; before_layer_gcode =  
; bridge_acceleration = 0 
; bridge_fan_speed = 100 
; brim_width = 0 
; complete_objects = 0 
; cooling = 0 
; default_acceleration = 0 
; disable_fan_first_layers = 1 
; duplicate_distance = 6 
; end_gcode = G1 E-20 F3000\nG1 Z150 
F200 S1 \nG1 X20 Y40 F12000 
; extruder_clearance_height = 20 
; extruder_clearance_radius = 20 
; extruder_offset = 0x0 
; extrusion_axis = E 
; extrusion_multiplier = 0.5 
; fan_always_on = 0 
; fan_below_layer_time = 60 
; filament_colour = #FFFFFF 
; filament_diameter = 1 
; first_layer_acceleration = 0 
; first_layer_bed_temperature = 0 
; first_layer_extrusion_width = 0 
; first_layer_speed = 50% 
; first_layer_temperature = 0 
; gcode_arcs = 0 
; gcode_comments = 0 
; gcode_flavor = reprap 
; infill_acceleration = 0 
; infill_first = 0 
; layer_gcode =  
; max_fan_speed = 100 
; max_print_speed = 80 
; max_volumetric_speed = 0 
; min_fan_speed = 35 
; min_print_speed = 10 
; min_skirt_length = 0 
; notes =  
; nozzle_diameter = 0.16 

; 
only_retract_when_crossing_perimeters 
= 1 
; ooze_prevention = 0 
; output_filename_format = 
[input_filename_base].gcode 
; perimeter_acceleration = 0 
; post_process =  
; pressure_advance = 0 
; resolution = 0 
; retract_before_travel = 2 
; retract_layer_change = 1 
; retract_length = 0 
; retract_length_toolchange = 0 
; retract_lift = 0 
; retract_restart_extra = 0 
; retract_restart_extra_toolchange = 0 
; retract_speed = 30 
; skirt_distance = 1 
; skirt_height = 2 
; skirts = 1 
; slowdown_below_layer_time = 30 
; spiral_vase = 0 
; standby_temperature_delta = -5 
; start_gcode =  
; temperature = 0 
; threads = 4 
; toolchange_gcode =  
; travel_speed = 3 
; use_firmware_retraction = 0 
; use_relative_e_distances = 1 
; use_volumetric_e = 0 
; vibration_limit = 0 
; wipe = 0 
; z_offset = 0 
; dont_support_bridges = 1 
; extrusion_width = 0 
; first_layer_height = 0.16 
; infill_only_where_needed = 0 
; interface_shells = 0 
; layer_height = 0.1 
; raft_layers = 0 
; seam_position = aligned 
; support_material = 0 
; support_material_angle = 0 
; support_material_contact_distance = 
0.2 

; support_material_enforce_layers = 0 
; support_material_extruder = 1 
; support_material_extrusion_width = 0 
; support_material_interface_extruder = 
1 
; support_material_interface_layers = 3 
; support_material_interface_spacing = 0 
; support_material_interface_speed = 
100% 
; support_material_pattern = honeycomb 
; support_material_spacing = 2.5 
; support_material_speed = 3 
; support_material_threshold = 60 
; xy_size_compensation = 0 
; bottom_solid_layers = 0 
; bridge_flow_ratio = 1 
; bridge_speed = 3 
; external_fill_pattern = rectilinear 
; external_perimeter_extrusion_width = 
0 
; external_perimeter_speed = 50% 
; external_perimeters_first = 0 
; extra_perimeters = 1 
; fill_angle = 0 
; fill_density = 20% 
; fill_pattern = rectilinear 
; gap_fill_speed = 3 
; infill_every_layers = 1 
; infill_extruder = 1 
; infill_extrusion_width = 0 
; infill_overlap = 0% 
; infill_speed = 3 
; overhangs = 0 
; perimeter_extruder = 1 
; perimeter_extrusion_width = 0 
; perimeter_speed = 3 
; perimeters = 2 
; small_perimeter_speed = 3 
; solid_infill_below_area = 70 
; solid_infill_every_layers = 0 
; solid_infill_extruder = 1 
; solid_infill_extrusion_width = 0 
; solid_infill_speed = 3 
; thin_walls = 1 
; top_infill_extrusion_width = 0 
; top_solid_infill_speed = 50 
; top_solid_layers = 0 

 
Collagen Hexagonal Scaffolds 
; external perimeters extrusion width = 
0.16mm 
; perimeters extrusion width = 0.22mm 
; infill extrusion width = 0.22mm 
; solid infill extrusion width = 0.22mm 
; top infill extrusion width = 0.22mm 
 
 
G21 ; set units to millimeters 
G90 ; use absolute coordinates 
M83 ; use relative distances for 
extrusion 
G1 Z0.160 F180.000 
G1 X12.511 Y-0.145 F180.000 
G1 X12.529 Y1.407 E0.02113 F90.000 
G1 X12.529 Y11.407 E0.13615 
G1 X12.146 Y12.256 E0.01268 
G1 X11.401 Y12.540 E0.01086 
G1 X-1.389 Y12.609 E0.17414 
G1 X-11.395 Y12.609 E0.13623 

G1 X-12.244 Y12.227 E0.01268 
G1 X-12.529 Y11.476 E0.01094 
G1 X-12.529 Y1.468 E0.13626 
G1 X-12.438 Y-11.484 E0.17633 
G1 X-12.050 Y-12.330 E0.01268 
G1 X-11.304 Y-12.609 E0.01084 
G1 X-1.303 Y-12.609 E0.13616 
G1 X11.247 Y-12.597 E0.17086 
F90.000 
G1 X12.095 Y-12.214 E0.01268 
G1 X12.379 Y-11.477 E0.01076 
G1 X12.510 Y-0.169 E0.15396 
G1 X11.185 Y1.616 F180.000 
G1 X11.185 Y11.197 E0.13044 F90.000 
G1 X1.605 Y11.197 E0.13044 
G1 X1.605 Y1.616 E0.13044 
G1 X11.161 Y1.616 E0.13011 
G1 X11.315 Y1.487 F180.000 
G1 X11.315 Y11.327 E0.12595 F90.000 
G1 X1.475 Y11.327 E0.12595 

G1 X1.475 Y1.487 E0.12595 
G1 X11.291 Y1.487 E0.12564 
G1 X11.235 Y1.625 F180.000 
G1 X10.468 Y2.467 F180.000 
G1 X11.018 Y2.467 E0.00749 F90.000 
G1 X11.018 Y2.668 E0.00274 
G1 X10.468 Y2.668 E0.00749 
G1 X10.004 Y3.472 E0.01264 
G1 X8.727 Y3.472 E0.01739 
G1 X8.263 Y2.668 E0.01264 
G1 X6.986 Y2.668 E0.01739 
G1 X6.521 Y3.472 E0.01264 
G1 X5.244 Y3.472 E0.01739 
G1 X4.780 Y2.668 E0.01264 
G1 X3.503 Y2.668 E0.01739 
G1 X3.039 Y3.472 E0.01264 
G1 X1.772 Y3.472 E0.01725 
G1 X1.772 Y1.784 E0.02299 
G1 X3.109 Y1.784 E0.01820 
G1 X3.503 Y2.467 E0.01074 
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G1 X4.780 Y2.467 E0.01739 
G1 X5.175 Y1.784 E0.01074 
G1 X6.591 Y1.784 E0.01929 
G1 X6.986 Y2.467 E0.01074 
G1 X8.263 Y2.467 E0.01739 
G1 X8.657 Y1.784 E0.01074 
G1 X10.074 Y1.784 E0.01929 
G1 X10.468 Y2.467 E0.01074 
G1 X3.503 Y4.477 F180.000 
G1 X4.780 Y4.477 E0.01739 F90.000 
G1 X5.244 Y3.673 E0.01264 
G1 X6.521 Y3.673 E0.01739 
G1 X6.986 Y4.477 E0.01264 
G1 X8.263 Y4.477 E0.01739 
G1 X8.727 Y3.673 E0.01264 
G1 X10.004 Y3.673 E0.01739 
G1 X10.468 Y4.477 E0.01264 
G1 X11.018 Y4.477 E0.00749 
G1 X11.018 Y4.679 E0.00274 
G1 X10.468 Y4.679 E0.00749 
G1 X10.004 Y5.483 E0.01264 
G1 X8.727 Y5.483 E0.01739 
G1 X8.263 Y4.679 E0.01264 
G1 X6.986 Y4.679 E0.01739 
G1 X6.521 Y5.483 E0.01264 
G1 X5.244 Y5.483 E0.01739 
G1 X4.780 Y4.679 E0.01264 
G1 X3.503 Y4.679 E0.01739 
G1 X3.039 Y5.483 E0.01264 
G1 X1.772 Y5.483 E0.01725 
G1 X1.772 Y3.673 E0.02464 
G1 X3.039 Y3.673 E0.01725 
G1 X3.503 Y4.477 E0.01264 
G1 X3.503 Y6.488 F180.000 
G1 X4.780 Y6.488 E0.01739 F90.000 
G1 X5.244 Y5.684 E0.01264 
G1 X6.521 Y5.684 E0.01739 
G1 X6.986 Y6.488 E0.01264 
G1 X8.263 Y6.488 E0.01739 
G1 X8.727 Y5.684 E0.01264 
G1 X10.004 Y5.684 E0.01739 
G1 X10.468 Y6.488 E0.01264 
G1 X11.018 Y6.488 E0.00749 
G1 X11.018 Y6.689 E0.00274 
G1 X10.468 Y6.689 E0.00749 
G1 X10.004 Y7.493 E0.01264 
G1 X8.727 Y7.493 E0.01739 
G1 X8.263 Y6.689 E0.01264 
G1 X6.986 Y6.689 E0.01739 
G1 X6.521 Y7.493 E0.01264 
G1 X5.244 Y7.493 E0.01739 
G1 X4.780 Y6.689 E0.01264 
G1 X3.503 Y6.689 E0.01739 
G1 X3.039 Y7.493 E0.01264 
G1 X1.772 Y7.493 E0.01725 
G1 X1.772 Y5.684 E0.02464 
G1 X3.039 Y5.684 E0.01725 
G1 X3.503 Y6.488 E0.01264 
G1 X3.503 Y8.499 F180.000 
G1 X4.780 Y8.499 E0.01739 F90.000 
G1 X5.244 Y7.694 E0.01264 
G1 X6.521 Y7.694 E0.01739 
G1 X6.986 Y8.499 E0.01264 
G1 X8.263 Y8.499 E0.01739 
G1 X8.727 Y7.694 E0.01264 
G1 X10.004 Y7.694 E0.01739 
G1 X10.468 Y8.499 E0.01264 
G1 X11.018 Y8.499 E0.00749 
G1 X11.018 Y8.700 E0.00274 
G1 X10.468 Y8.700 E0.00749 

G1 X10.004 Y9.504 E0.01264 
G1 X8.727 Y9.504 E0.01739 
G1 X8.263 Y8.700 E0.01264 
G1 X6.986 Y8.700 E0.01739 
G1 X6.521 Y9.504 E0.01264 
G1 X5.244 Y9.504 E0.01739 
G1 X4.780 Y8.700 E0.01264 
G1 X3.503 Y8.700 E0.01739 
G1 X3.039 Y9.504 E0.01264 
G1 X1.772 Y9.504 E0.01725 
G1 X1.772 Y7.694 E0.02464 
G1 X3.039 Y7.694 E0.01725 
G1 X3.503 Y8.499 E0.01264 
G1 X3.503 Y10.509 F180.000 
G1 X4.780 Y10.509 E0.01739 F90.000 
G1 X5.244 Y9.705 E0.01264 
G1 X6.521 Y9.705 E0.01739 
G1 X6.986 Y10.509 E0.01264 
G1 X8.263 Y10.509 E0.01739 
G1 X8.727 Y9.705 E0.01264 
G1 X10.004 Y9.705 E0.01739 
G1 X10.468 Y10.509 E0.01264 
G1 X11.018 Y10.509 E0.00749 
G1 X11.018 Y10.710 E0.00274 
G1 X10.468 Y10.710 E0.00749 
G1 X10.284 Y11.030 E0.00502 
G1 X8.447 Y11.030 E0.02501 
G1 X8.263 Y10.710 E0.00502 
G1 X6.986 Y10.710 E0.01739 
G1 X6.801 Y11.030 E0.00502 
G1 X4.964 Y11.030 E0.02501 
G1 X4.780 Y10.710 E0.00502 
G1 X3.503 Y10.710 E0.01739 
G1 X3.319 Y11.030 E0.00502 
G1 X1.772 Y11.030 E0.02106 
G1 X1.772 Y9.705 E0.01803 
G1 X3.039 Y9.705 E0.01725 
G1 X3.503 Y10.509 E0.01264 
G1 X0.395 Y0.992 F180.000 
G1 X-0.003 Y0.992 F180.000 
G1 X0.000 Y1.061 F180.000 
G1 X-0.395 Y1.061 F180.000 
G1 X-1.605 Y1.685 F180.000 
G1 X-1.605 Y11.266 E0.13044 F90.000 
G1 X-11.185 Y11.266 E0.13044 
G1 X-11.185 Y1.685 E0.13044 
G1 X-1.629 Y1.685 E0.13011 
G1 X-1.475 Y1.556 F180.000 
G1 X-1.475 Y11.396 E0.12595 F90.000 
G1 X-11.315 Y11.396 E0.12595 
G1 X-11.315 Y1.556 E0.12595 
G1 X-1.499 Y1.556 E0.12564 
G1 X-1.555 Y1.694 F180.000 
G1 X-2.322 Y2.536 F180.000 
G1 X-1.772 Y2.536 E0.00749 F90.000 
G1 X-1.772 Y2.737 E0.00274 
G1 X-2.322 Y2.737 E0.00749 
G1 X-2.786 Y3.541 E0.01264 
G1 X-4.063 Y3.541 E0.01739 
G1 X-4.528 Y2.737 E0.01264 
G1 X-5.804 Y2.737 E0.01739 
G1 X-6.269 Y3.541 E0.01264 
G1 X-7.546 Y3.541 E0.01739 
G1 X-8.010 Y2.737 E0.01264 
G1 X-9.287 Y2.737 E0.01739 
G1 X-9.751 Y3.541 E0.01264 
G1 X-11.018 Y3.541 E0.01725 
G1 X-11.018 Y1.853 E0.02299 
G1 X-9.681 Y1.853 E0.01820 
G1 X-9.287 Y2.536 E0.01074 

G1 X-8.010 Y2.536 E0.01739 
G1 X-7.616 Y1.853 E0.01074 
G1 X-6.199 Y1.853 E0.01929 
G1 X-5.804 Y2.536 E0.01074 
G1 X-4.528 Y2.536 E0.01739 
G1 X-4.133 Y1.853 E0.01074 
G1 X-2.716 Y1.853 E0.01929 
G1 X-2.322 Y2.536 E0.01074 
G1 X-9.287 Y4.547 F180.000 
G1 X-8.010 Y4.547 E0.01739 F90.000 
G1 X-7.546 Y3.742 E0.01264 
G1 X-6.269 Y3.742 E0.01739 
G1 X-5.804 Y4.547 E0.01264 
G1 X-4.528 Y4.547 E0.01739 
G1 X-4.063 Y3.742 E0.01264 
G1 X-2.786 Y3.742 E0.01739 
G1 X-2.322 Y4.547 E0.01264 
G1 X-1.772 Y4.547 E0.00749 
G1 X-1.772 Y4.748 E0.00274 
G1 X-2.322 Y4.748 E0.00749 
G1 X-2.786 Y5.552 E0.01264 
G1 X-4.063 Y5.552 E0.01739 
G1 X-4.528 Y4.748 E0.01264 
G1 X-5.804 Y4.748 E0.01739 
G1 X-6.269 Y5.552 E0.01264 
G1 X-7.546 Y5.552 E0.01739 
G1 X-8.010 Y4.748 E0.01264 
G1 X-9.287 Y4.748 E0.01739 
G1 X-9.751 Y5.552 E0.01264 
G1 X-11.018 Y5.552 E0.01725 
G1 X-11.018 Y3.742 E0.02464 
G1 X-9.751 Y3.742 E0.01725 
G1 X-9.287 Y4.547 E0.01264 
G1 X-9.287 Y6.557 F180.000 
G1 X-8.010 Y6.557 E0.01739 F90.000 
G1 X-7.546 Y5.753 E0.01264 
G1 X-6.269 Y5.753 E0.01739 
G1 X-5.804 Y6.557 E0.01264 
G1 X-4.528 Y6.557 E0.01739 
G1 X-4.063 Y5.753 E0.01264 
G1 X-2.786 Y5.753 E0.01739 
G1 X-2.322 Y6.557 E0.01264 
G1 X-1.772 Y6.557 E0.00749 
G1 X-1.772 Y6.758 E0.00274 
G1 X-2.322 Y6.758 E0.00749 
G1 X-2.786 Y7.562 E0.01264 
G1 X-4.063 Y7.562 E0.01739 
G1 X-4.528 Y6.758 E0.01264 
G1 X-5.804 Y6.758 E0.01739 
G1 X-6.269 Y7.562 E0.01264 
G1 X-7.546 Y7.562 E0.01739 
G1 X-8.010 Y6.758 E0.01264 
G1 X-9.287 Y6.758 E0.01739 
G1 X-9.751 Y7.562 E0.01264 
G1 X-11.018 Y7.562 E0.01725 
G1 X-11.018 Y5.753 E0.02464 
G1 X-9.751 Y5.753 E0.01725 
G1 X-9.287 Y6.557 E0.01264 
G1 X-9.287 Y8.568 F180.000 
G1 X-8.010 Y8.568 E0.01739 F90.000 
G1 X-7.546 Y7.764 E0.01264 
G1 X-6.269 Y7.764 E0.01739 
G1 X-5.804 Y8.568 E0.01264 
G1 X-4.528 Y8.568 E0.01739 
G1 X-4.063 Y7.764 E0.01264 
G1 X-2.786 Y7.764 E0.01739 
G1 X-2.322 Y8.568 E0.01264 
G1 X-1.772 Y8.568 E0.00749 
G1 X-1.772 Y8.769 E0.00274 
G1 X-2.322 Y8.769 E0.00749 
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G1 X-2.786 Y9.573 E0.01264 
G1 X-4.063 Y9.573 E0.01739 
G1 X-4.528 Y8.769 E0.01264 
G1 X-5.804 Y8.769 E0.01739 
G1 X-6.269 Y9.573 E0.01264 
G1 X-7.546 Y9.573 E0.01739 
G1 X-8.010 Y8.769 E0.01264 
G1 X-9.287 Y8.769 E0.01739 
G1 X-9.751 Y9.573 E0.01264 
G1 X-11.018 Y9.573 E0.01725 
G1 X-11.018 Y7.764 E0.02464 
G1 X-9.751 Y7.764 E0.01725 
G1 X-9.287 Y8.568 E0.01264 
G1 X-9.287 Y10.578 F180.000 
G1 X-8.010 Y10.578 E0.01739 F90.000 
G1 X-7.546 Y9.774 E0.01264 
G1 X-6.269 Y9.774 E0.01739 
G1 X-5.804 Y10.578 E0.01264 
G1 X-4.528 Y10.578 E0.01739 
G1 X-4.063 Y9.774 E0.01264 
G1 X-2.786 Y9.774 E0.01739 
G1 X-2.322 Y10.578 E0.01264 
G1 X-1.772 Y10.578 E0.00749 
G1 X-1.772 Y10.779 E0.00274 
G1 X-2.322 Y10.779 E0.00749 
G1 X-2.506 Y11.099 E0.00502 
G1 X-4.343 Y11.099 E0.02501 
G1 X-4.528 Y10.779 E0.00502 
G1 X-5.804 Y10.779 E0.01739 
G1 X-5.989 Y11.099 E0.00502 
G1 X-7.826 Y11.099 E0.02501 
G1 X-8.010 Y10.779 E0.00502 
G1 X-9.287 Y10.779 E0.01739 
G1 X-9.471 Y11.099 E0.00502 
G1 X-11.018 Y11.099 E0.02106 
G1 X-11.018 Y9.774 E0.01803 
G1 X-9.751 Y9.774 E0.01725 
G1 X-9.287 Y10.578 E0.01264 
G1 X-0.981 Y0.476 F180.000 
G1 X-0.369 Y0.045 F180.000 
G1 X-0.035 Y-0.768 F180.000 
G1 X-0.035 Y-0.792 F180.000 
G1 X-0.304 Y-1.061 F180.000 
G1 X-1.514 Y-11.266 F180.000 
G1 X-1.514 Y-1.685 E0.13044 F90.000 
G1 X-11.095 Y-1.685 E0.13044 
G1 X-11.095 Y-11.266 E0.13044 
G1 X-1.538 Y-11.266 E0.13011 
G1 X-1.384 Y-11.396 F180.000 
G1 X-1.384 Y-1.556 E0.12595 F90.000 
G1 X-11.224 Y-1.556 E0.12595 
G1 X-11.224 Y-11.396 E0.12595 
G1 X-1.408 Y-11.396 E0.12564 
G1 X-1.464 Y-11.257 F180.000 
G1 X-2.231 Y-10.415 F180.000 
G1 X-1.681 Y-10.415 E0.00749 F90.000 
G1 X-1.681 Y-10.214 E0.00274 
G1 X-2.231 Y-10.214 E0.00749 
G1 X-2.695 Y-9.410 E0.01264 
G1 X-3.972 Y-9.410 E0.01739 
G1 X-4.437 Y-10.214 E0.01264 
G1 X-5.714 Y-10.214 E0.01739 
G1 X-6.178 Y-9.410 E0.01264 
G1 X-7.455 Y-9.410 E0.01739 
G1 X-7.919 Y-10.214 E0.01264 
G1 X-9.196 Y-10.214 E0.01739 
G1 X-9.660 Y-9.410 E0.01264 
G1 X-10.927 Y-9.410 E0.01725 
G1 X-10.927 Y-11.099 E0.02299 
G1 X-9.591 Y-11.099 E0.01820 

G1 X-9.196 Y-10.415 E0.01074 
G1 X-7.919 Y-10.415 E0.01739 
G1 X-7.525 Y-11.099 E0.01074 
G1 X-6.108 Y-11.099 E0.01929 
G1 X-5.714 Y-10.415 E0.01074 
G1 X-4.437 Y-10.415 E0.01739 
G1 X-4.042 Y-11.099 E0.01074 
G1 X-2.626 Y-11.099 E0.01929 
G1 X-2.231 Y-10.415 E0.01074 
G1 X-9.196 Y-8.405 F180.000 
G1 X-7.919 Y-8.405 E0.01739 F90.000 
G1 X-7.455 Y-9.209 E0.01264 
G1 X-6.178 Y-9.209 E0.01739 
G1 X-5.714 Y-8.405 E0.01264 
G1 X-4.437 Y-8.405 E0.01739 
G1 X-3.972 Y-9.209 E0.01264 
G1 X-2.695 Y-9.209 E0.01739 
G1 X-2.231 Y-8.405 E0.01264 
G1 X-1.681 Y-8.405 E0.00749 
G1 X-1.681 Y-8.204 E0.00274 
G1 X-2.231 Y-8.204 E0.00749 
G1 X-2.695 Y-7.399 E0.01264 
G1 X-3.972 Y-7.399 E0.01739 
G1 X-4.437 Y-8.204 E0.01264 
G1 X-5.714 Y-8.204 E0.01739 
G1 X-6.178 Y-7.399 E0.01264 
G1 X-7.455 Y-7.399 E0.01739 
G1 X-7.919 Y-8.204 E0.01264 
G1 X-9.196 Y-8.204 E0.01739 
G1 X-9.660 Y-7.399 E0.01264 
G1 X-10.927 Y-7.399 E0.01725 
G1 X-10.927 Y-9.209 E0.02464 
G1 X-9.660 Y-9.209 E0.01725 
G1 X-9.196 Y-8.405 E0.01264 
G1 X-9.196 Y-6.394 F180.000 
G1 X-7.919 Y-6.394 E0.01739 F90.000 
G1 X-7.455 Y-7.198 E0.01264 
G1 X-6.178 Y-7.198 E0.01739 
G1 X-5.714 Y-6.394 E0.01264 
G1 X-4.437 Y-6.394 E0.01739 
G1 X-3.972 Y-7.198 E0.01264 
G1 X-2.695 Y-7.198 E0.01739 
G1 X-2.231 Y-6.394 E0.01264 
G1 X-1.681 Y-6.394 E0.00749 
G1 X-1.681 Y-6.193 E0.00274 
G1 X-2.231 Y-6.193 E0.00749 
G1 X-2.695 Y-5.389 E0.01264 
G1 X-3.972 Y-5.389 E0.01739 
G1 X-4.437 Y-6.193 E0.01264 
G1 X-5.714 Y-6.193 E0.01739 
G1 X-6.178 Y-5.389 E0.01264 
G1 X-7.455 Y-5.389 E0.01739 
G1 X-7.919 Y-6.193 E0.01264 
G1 X-9.196 Y-6.193 E0.01739 
G1 X-9.660 Y-5.389 E0.01264 
G1 X-10.927 Y-5.389 E0.01725 
G1 X-10.927 Y-7.198 E0.02464 
G1 X-9.660 Y-7.198 E0.01725 
G1 X-9.196 Y-6.394 E0.01264 
G1 X-9.196 Y-4.383 F180.000 
G1 X-7.919 Y-4.383 E0.01739 F90.000 
G1 X-7.455 Y-5.188 E0.01264 
G1 X-6.178 Y-5.188 E0.01739 
G1 X-5.714 Y-4.383 E0.01264 
G1 X-4.437 Y-4.383 E0.01739 
G1 X-3.972 Y-5.188 E0.01264 
G1 X-2.695 Y-5.188 E0.01739 
G1 X-2.231 Y-4.383 E0.01264 
G1 X-1.681 Y-4.383 E0.00749 
G1 X-1.681 Y-4.182 E0.00274 

G1 X-2.231 Y-4.182 E0.00749 
G1 X-2.695 Y-3.378 E0.01264 
G1 X-3.972 Y-3.378 E0.01739 
G1 X-4.437 Y-4.182 E0.01264 
G1 X-5.714 Y-4.182 E0.01739 
G1 X-6.178 Y-3.378 E0.01264 
G1 X-7.455 Y-3.378 E0.01739 
G1 X-7.919 Y-4.182 E0.01264 
G1 X-9.196 Y-4.182 E0.01739 
G1 X-9.660 Y-3.378 E0.01264 
G1 X-10.927 Y-3.378 E0.01725 
G1 X-10.927 Y-5.188 E0.02464 
G1 X-9.660 Y-5.188 E0.01725 
G1 X-9.196 Y-4.383 E0.01264 
G1 X-9.196 Y-2.373 F180.000 
G1 X-7.919 Y-2.373 E0.01739 F90.000 
G1 X-7.455 Y-3.177 E0.01264 
G1 X-6.178 Y-3.177 E0.01739 
G1 X-5.714 Y-2.373 E0.01264 
G1 X-4.437 Y-2.373 E0.01739 
G1 X-3.972 Y-3.177 E0.01264 
G1 X-2.695 Y-3.177 E0.01739 
G1 X-2.231 Y-2.373 E0.01264 
G1 X-1.681 Y-2.373 E0.00749 
G1 X-1.681 Y-2.172 E0.00274 
G1 X-2.231 Y-2.172 E0.00749 
G1 X-2.415 Y-1.853 E0.00502 
G1 X-4.252 Y-1.853 E0.02501 
G1 X-4.437 Y-2.172 E0.00502 
G1 X-5.714 Y-2.172 E0.01739 
G1 X-5.898 Y-1.853 E0.00502 
G1 X-7.735 Y-1.853 E0.02501 
G1 X-7.919 Y-2.172 E0.00502 
G1 X-9.196 Y-2.172 E0.01739 
G1 X-9.380 Y-1.853 E0.00502 
G1 X-10.927 Y-1.853 E0.02106 
G1 X-10.927 Y-3.177 E0.01803 
G1 X-9.660 Y-3.177 E0.01725 
G1 X-9.196 Y-2.373 E0.01264 
G1 X-0.304 Y-11.890 F180.000 
G1 X-0.023 Y-12.171 F180.000 
G1 X-0.002 Y-13.297 F180.000 
G1 X0.831 Y-12.464 F180.000 
G1 X11.036 Y-11.254 F180.000 
G1 X11.036 Y-1.673 E0.13044 F90.000 
G1 X1.455 Y-1.673 E0.13044 
G1 X1.455 Y-11.254 E0.13044 
G1 X11.012 Y-11.254 E0.13011 
G1 X11.166 Y-11.384 F180.000 
G1 X11.166 Y-1.544 E0.12595 F90.000 
G1 X1.326 Y-1.544 E0.12595 
G1 X1.326 Y-11.384 E0.12595 
G1 X11.142 Y-11.384 E0.12564 
G1 X11.086 Y-11.245 F180.000 
G1 X10.319 Y-10.403 F180.000 
G1 X10.869 Y-10.403 E0.00749 
F90.000 
G1 X10.869 Y-10.202 E0.00274 
G1 X10.319 Y-10.202 E0.00749 
G1 X9.854 Y-9.398 E0.01264 
G1 X8.577 Y-9.398 E0.01739 
G1 X8.113 Y-10.202 E0.01264 
G1 X6.836 Y-10.202 E0.01739 
G1 X6.372 Y-9.398 E0.01264 
G1 X5.095 Y-9.398 E0.01739 
G1 X4.631 Y-10.202 E0.01264 
G1 X3.354 Y-10.202 E0.01739 
G1 X2.889 Y-9.398 E0.01264 
G1 X1.623 Y-9.398 E0.01725 
G1 X1.623 Y-11.087 E0.02299 
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G1 X2.959 Y-11.087 E0.01820 
G1 X3.354 Y-10.403 E0.01074 
G1 X4.631 Y-10.403 E0.01739 
G1 X5.025 Y-11.087 E0.01074 
G1 X6.442 Y-11.087 E0.01929 
G1 X6.836 Y-10.403 E0.01074 
G1 X8.113 Y-10.403 E0.01739 
G1 X8.508 Y-11.087 E0.01074 
G1 X9.924 Y-11.087 E0.01929 
G1 X10.319 Y-10.403 E0.01074 
G1 X3.354 Y-8.393 F180.000 
G1 X4.631 Y-8.393 E0.01739 F90.000 
G1 X5.095 Y-9.197 E0.01264 
G1 X6.372 Y-9.197 E0.01739 
G1 X6.836 Y-8.393 E0.01264 
G1 X8.113 Y-8.393 E0.01739 
G1 X8.577 Y-9.197 E0.01264 
G1 X9.854 Y-9.197 E0.01739 
G1 X10.319 Y-8.393 E0.01264 
G1 X10.869 Y-8.393 E0.00749 
G1 X10.869 Y-8.192 E0.00274 
G1 X10.319 Y-8.192 E0.00749 
G1 X9.854 Y-7.387 E0.01264 
G1 X8.577 Y-7.387 E0.01739 
G1 X8.113 Y-8.192 E0.01264 
G1 X6.836 Y-8.192 E0.01739 
G1 X6.372 Y-7.387 E0.01264 
G1 X5.095 Y-7.387 E0.01739 
G1 X4.631 Y-8.192 E0.01264 
G1 X3.354 Y-8.192 E0.01739 
G1 X2.889 Y-7.387 E0.01264 
G1 X1.623 Y-7.387 E0.01725 
G1 X1.623 Y-9.197 E0.02464 
G1 X2.889 Y-9.197 E0.01725 
G1 X3.354 Y-8.393 E0.01264 
G1 X3.354 Y-6.382 F180.000 
G1 X4.631 Y-6.382 E0.01739 F90.000 
G1 X5.095 Y-7.186 E0.01264 
G1 X6.372 Y-7.186 E0.01739 
G1 X6.836 Y-6.382 E0.01264 
G1 X8.113 Y-6.382 E0.01739 
G1 X8.577 Y-7.186 E0.01264 
G1 X9.854 Y-7.186 E0.01739 
G1 X10.319 Y-6.382 E0.01264 
G1 X10.869 Y-6.382 E0.00749 
G1 X10.869 Y-6.181 E0.00274 
G1 X10.319 Y-6.181 E0.00749 
G1 X9.854 Y-5.377 E0.01264 
G1 X8.577 Y-5.377 E0.01739 
G1 X8.113 Y-6.181 E0.01264 
G1 X6.836 Y-6.181 E0.01739 
G1 X6.372 Y-5.377 E0.01264 
G1 X5.095 Y-5.377 E0.01739 
G1 X4.631 Y-6.181 E0.01264 
G1 X3.354 Y-6.181 E0.01739 
G1 X2.889 Y-5.377 E0.01264 
G1 X1.623 Y-5.377 E0.01725 
G1 X1.623 Y-7.186 E0.02464 
G1 X2.889 Y-7.186 E0.01725 
G1 X3.354 Y-6.382 E0.01264 
G1 X3.354 Y-4.371 F180.000 
G1 X4.631 Y-4.371 E0.01739 F90.000 
G1 X5.095 Y-5.176 E0.01264 
G1 X6.372 Y-5.176 E0.01739 
G1 X6.836 Y-4.371 E0.01264 
G1 X8.113 Y-4.371 E0.01739 
G1 X8.577 Y-5.176 E0.01264 
G1 X9.854 Y-5.176 E0.01739 
G1 X10.319 Y-4.371 E0.01264 
G1 X10.869 Y-4.371 E0.00749 

G1 X10.869 Y-4.170 E0.00274 
G1 X10.319 Y-4.170 E0.00749 
G1 X9.854 Y-3.366 E0.01264 
G1 X8.577 Y-3.366 E0.01739 
G1 X8.113 Y-4.170 E0.01264 
G1 X6.836 Y-4.170 E0.01739 
G1 X6.372 Y-3.366 E0.01264 
G1 X5.095 Y-3.366 E0.01739 
G1 X4.631 Y-4.170 E0.01264 
G1 X3.354 Y-4.170 E0.01739 
G1 X2.889 Y-3.366 E0.01264 
G1 X1.623 Y-3.366 E0.01725 
G1 X1.623 Y-5.176 E0.02464 
G1 X2.889 Y-5.176 E0.01725 
G1 X3.354 Y-4.371 E0.01264 
G1 X3.354 Y-2.361 F180.000 
G1 X4.631 Y-2.361 E0.01739 F90.000 
G1 X5.095 Y-3.165 E0.01264 
G1 X6.372 Y-3.165 E0.01739 
G1 X6.836 Y-2.361 E0.01264 
G1 X8.113 Y-2.361 E0.01739 
G1 X8.577 Y-3.165 E0.01264 
G1 X9.854 Y-3.165 E0.01739 
G1 X10.319 Y-2.361 E0.01264 
G1 X10.869 Y-2.361 E0.00749 
G1 X10.869 Y-2.160 E0.00274 
G1 X10.319 Y-2.160 E0.00749 
G1 X10.134 Y-1.841 E0.00502 
G1 X8.297 Y-1.841 E0.02501 
G1 X8.113 Y-2.160 E0.00502 
G1 X6.836 Y-2.160 E0.01739 
G1 X6.652 Y-1.841 E0.00502 
G1 X4.815 Y-1.841 E0.02501 
G1 X4.631 Y-2.160 E0.00502 
G1 X3.354 Y-2.160 E0.01739 
G1 X3.169 Y-1.841 E0.00502 
G1 X1.623 Y-1.841 E0.02106 
G1 X1.623 Y-3.165 E0.01803 
G1 X2.889 Y-3.165 E0.01725 
G1 X3.354 Y-2.361 E0.01264 
G1 Z0.260 F180.000 
G1 X11.660 Y-0.464 F180.000 
G1 X12.042 Y-0.081 F180.000 
G1 X12.319 Y-0.103 F180.000 
G1 X12.513 Y0.050 F180.000 
G1 X12.529 Y1.407 E0.01266 F180.000 
G1 X12.529 Y11.407 E0.09329 
G1 X12.146 Y12.256 E0.00869 
G1 X11.401 Y12.540 E0.00744 
G1 X-1.389 Y12.609 E0.11932 
G1 X-11.395 Y12.609 E0.09335 
G1 X-12.244 Y12.227 E0.00869 
G1 X-12.529 Y11.476 E0.00750 
G1 X-12.529 Y1.468 E0.09336 
G1 X-12.438 Y-11.484 E0.12082 
G1 X-12.050 Y-12.330 E0.00869 
G1 X-11.304 Y-12.609 E0.00743 
G1 X-1.303 Y-12.609 E0.09330 
G1 X11.247 Y-12.597 E0.11708 
F180.000 
G1 X12.095 Y-12.214 E0.00869 
G1 X12.379 Y-11.477 E0.00737 
G1 X12.513 Y0.026 E0.10732 
G1 X12.319 Y-0.103 F180.000 
G1 X12.319 Y-0.103 F180.000 
G1 X11.809 Y0.407 F180.000 
G1 X11.145 Y1.656 F180.000 
G1 X11.145 Y11.157 E0.12161 
F180.000 
G1 X1.645 Y11.157 E0.12161 

G1 X1.645 Y1.656 E0.12161 
G1 X11.121 Y1.656 E0.12130 
G1 X11.315 Y1.487 F180.000 
G1 X11.315 Y11.327 E0.08679 
F180.000 
G1 X1.475 Y11.327 E0.08679 
G1 X1.475 Y1.487 E0.08679 
G1 X11.291 Y1.487 E0.08657 
G1 X11.235 Y1.625 F180.000 
G1 X10.944 Y2.567 F180.000 
G1 X10.642 Y2.567 E0.00386 F180.000 
G1 X10.004 Y3.673 E0.01634 
G1 X10.468 Y4.477 E0.01189 
G1 X9.830 Y5.583 E0.01634 
G1 X8.901 Y5.583 E0.01189 
G1 X8.263 Y6.689 E0.01634 
G1 X8.727 Y7.493 E0.01189 
G1 X8.088 Y8.599 E0.01634 
G1 X7.160 Y8.599 E0.01189 
G1 X6.521 Y9.705 E0.01634 
G1 X6.986 Y10.509 E0.01189 
G1 X6.728 Y10.956 E0.00660 
G1 X6.960 Y10.956 E0.00297 
G1 X7.160 Y10.610 E0.00511 
G1 X8.088 Y10.610 E0.01189 
G1 X8.727 Y9.504 E0.01634 
G1 X8.263 Y8.700 E0.01189 
G1 X8.901 Y7.594 E0.01634 
G1 X9.830 Y7.594 E0.01189 
G1 X10.468 Y6.488 E0.01634 
G1 X10.004 Y5.684 E0.01189 
G1 X10.642 Y4.578 E0.01634 
G1 X10.944 Y4.578 E0.00386 
G1 X10.944 Y2.567 E0.02574 
G1 X10.468 Y2.467 F180.000 
G1 X10.116 Y1.857 E0.00901 F180.000 
G1 X8.731 Y1.857 E0.01774 
G1 X8.263 Y2.668 E0.01198 
G1 X8.727 Y3.472 E0.01189 
G1 X8.088 Y4.578 E0.01634 
G1 X7.160 Y4.578 E0.01189 
G1 X6.521 Y5.684 E0.01634 
G1 X6.986 Y6.488 E0.01189 
G1 X6.347 Y7.594 E0.01634 
G1 X5.419 Y7.594 E0.01189 
G1 X4.780 Y8.700 E0.01634 
G1 X5.244 Y9.504 E0.01189 
G1 X4.606 Y10.610 E0.01634 
G1 X3.677 Y10.610 E0.01189 
G1 X3.478 Y10.956 E0.00511 
G1 X4.922 Y10.956 E0.01848 
G1 X4.780 Y10.710 E0.00363 
G1 X5.419 Y9.605 E0.01634 
G1 X6.347 Y9.605 E0.01189 
G1 X6.986 Y8.499 E0.01634 
G1 X6.521 Y7.694 E0.01189 
G1 X7.160 Y6.589 E0.01634 
G1 X8.088 Y6.589 E0.01189 
G1 X8.727 Y5.483 E0.01634 
G1 X8.263 Y4.679 E0.01189 
G1 X8.901 Y3.573 E0.01634 
G1 X9.830 Y3.573 E0.01189 
G1 X10.468 Y2.467 E0.01634 
G1 X8.088 Y2.567 F180.000 
G1 X8.498 Y1.857 E0.01049 F180.000 
G1 X6.634 Y1.857 E0.02387 
G1 X6.986 Y2.467 E0.00901 
G1 X6.347 Y3.573 E0.01634 
G1 X5.419 Y3.573 E0.01189 
G1 X4.780 Y4.679 E0.01634 
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G1 X5.244 Y5.483 E0.01189 
G1 X4.606 Y6.589 E0.01634 
G1 X3.677 Y6.589 E0.01189 
G1 X3.039 Y7.694 E0.01634 
G1 X3.503 Y8.499 E0.01189 
G1 X2.865 Y9.605 E0.01634 
G1 X1.936 Y9.605 E0.01189 
G1 X1.846 Y9.761 E0.00231 
G1 X1.846 Y10.956 E0.01530 
G1 X3.245 Y10.956 E0.01791 
G1 X3.503 Y10.509 E0.00660 
G1 X3.039 Y9.705 E0.01189 
G1 X3.677 Y8.599 E0.01634 
G1 X4.606 Y8.599 E0.01189 
G1 X5.244 Y7.493 E0.01634 
G1 X4.780 Y6.689 E0.01189 
G1 X5.419 Y5.583 E0.01634 
G1 X6.347 Y5.583 E0.01189 
G1 X6.986 Y4.477 E0.01634 
G1 X6.521 Y3.673 E0.01189 
G1 X7.160 Y2.567 E0.01634 
G1 X8.088 Y2.567 E0.01189 
G1 X4.780 Y2.668 F180.000 
G1 X5.248 Y1.857 E0.01198 F180.000 
G1 X5.016 Y1.857 E0.00297 
G1 X4.606 Y2.567 E0.01049 
G1 X3.677 Y2.567 E0.01189 
G1 X3.039 Y3.673 E0.01634 
G1 X3.503 Y4.477 E0.01189 
G1 X2.865 Y5.583 E0.01634 
G1 X1.936 Y5.583 E0.01189 
G1 X1.846 Y5.739 E0.00231 
G1 X1.846 Y7.750 E0.02574 
G1 X1.936 Y7.594 E0.00231 
G1 X2.865 Y7.594 E0.01189 
G1 X3.503 Y6.488 E0.01634 
G1 X3.039 Y5.684 E0.01189 
G1 X3.677 Y4.578 E0.01634 
G1 X4.606 Y4.578 E0.01189 
G1 X5.244 Y3.472 E0.01634 
G1 X4.780 Y2.668 E0.01189 
G1 X3.503 Y2.467 F180.000 
G1 X3.151 Y1.857 E0.00901 F180.000 
G1 X1.846 Y1.857 E0.01671 
G1 X1.846 Y3.729 E0.02395 
G1 X1.936 Y3.573 E0.00231 
G1 X2.865 Y3.573 E0.01189 
G1 X3.503 Y2.467 E0.01634 
G1 X10.944 Y8.599 F180.000 
G1 X10.944 Y6.589 E0.02574 F180.000 
G1 X10.642 Y6.589 E0.00386 
G1 X10.004 Y7.694 E0.01634 
G1 X10.468 Y8.499 E0.01189 
G1 X9.830 Y9.605 E0.01634 
G1 X8.901 Y9.605 E0.01189 
G1 X8.263 Y10.710 E0.01634 
G1 X8.404 Y10.956 E0.00363 
G1 X10.210 Y10.956 E0.02312 
G1 X10.468 Y10.509 E0.00660 
G1 X10.004 Y9.705 E0.01189 
G1 X10.642 Y8.599 E0.01634 
G1 X10.944 Y8.599 E0.00386 
G1 X10.944 Y10.956 F180.000 
G1 X10.944 Y10.610 E0.00443 
F180.000 
G1 X10.642 Y10.610 E0.00386 
G1 X10.443 Y10.956 E0.00511 
G1 X10.944 Y10.956 E0.00642 
G1 X0.395 Y0.992 F180.000 
G1 X-0.003 Y0.992 F180.000 

G1 X0.000 Y1.061 F180.000 
G1 X-0.395 Y1.061 F180.000 
G1 X-1.645 Y1.725 F180.000 
G1 X-1.645 Y11.226 E0.12161 
F180.000 
G1 X-11.145 Y11.226 E0.12161 
G1 X-11.145 Y1.725 E0.12161 
G1 X-1.669 Y1.725 E0.12130 
G1 X-1.475 Y1.556 F180.000 
G1 X-1.475 Y11.396 E0.08679 
F180.000 
G1 X-11.315 Y11.396 E0.08679 
G1 X-11.315 Y1.556 E0.08679 
G1 X-1.499 Y1.556 E0.08657 
G1 X-1.555 Y1.694 F180.000 
G1 X-1.846 Y2.636 F180.000 
G1 X-2.148 Y2.636 E0.00386 F180.000 
G1 X-2.786 Y3.742 E0.01634 
G1 X-2.322 Y4.547 E0.01189 
G1 X-2.960 Y5.652 E0.01634 
G1 X-3.889 Y5.652 E0.01189 
G1 X-4.528 Y6.758 E0.01634 
G1 X-4.063 Y7.562 E0.01189 
G1 X-4.702 Y8.668 E0.01634 
G1 X-5.630 Y8.668 E0.01189 
G1 X-6.269 Y9.774 E0.01634 
G1 X-5.804 Y10.578 E0.01189 
G1 X-6.062 Y11.025 E0.00660 
G1 X-5.830 Y11.025 E0.00297 
G1 X-5.630 Y10.679 E0.00511 
G1 X-4.702 Y10.679 E0.01189 
G1 X-4.063 Y9.573 E0.01634 
G1 X-4.528 Y8.769 E0.01189 
G1 X-3.889 Y7.663 E0.01634 
G1 X-2.960 Y7.663 E0.01189 
G1 X-2.322 Y6.557 E0.01634 
G1 X-2.786 Y5.753 E0.01189 
G1 X-2.148 Y4.647 E0.01634 
G1 X-1.846 Y4.647 E0.00386 
G1 X-1.846 Y2.636 E0.02574 
G1 X-2.322 Y2.536 F180.000 
G1 X-2.674 Y1.926 E0.00901 F180.000 
G1 X-4.060 Y1.926 E0.01774 
G1 X-4.528 Y2.737 E0.01198 
G1 X-4.063 Y3.541 E0.01189 
G1 X-4.702 Y4.647 E0.01634 
G1 X-5.630 Y4.647 E0.01189 
G1 X-6.269 Y5.753 E0.01634 
G1 X-5.804 Y6.557 E0.01189 
G1 X-6.443 Y7.663 E0.01634 
G1 X-7.372 Y7.663 E0.01189 
G1 X-8.010 Y8.769 E0.01634 
G1 X-7.546 Y9.573 E0.01189 
G1 X-8.184 Y10.679 E0.01634 
G1 X-9.113 Y10.679 E0.01189 
G1 X-9.313 Y11.025 E0.00511 
G1 X-7.868 Y11.025 E0.01848 
G1 X-8.010 Y10.779 E0.00363 
G1 X-7.372 Y9.674 E0.01634 
G1 X-6.443 Y9.674 E0.01189 
G1 X-5.804 Y8.568 E0.01634 
G1 X-6.269 Y7.764 E0.01189 
G1 X-5.630 Y6.658 E0.01634 
G1 X-4.702 Y6.658 E0.01189 
G1 X-4.063 Y5.552 E0.01634 
G1 X-4.528 Y4.748 E0.01189 
G1 X-3.889 Y3.642 E0.01634 
G1 X-2.960 Y3.642 E0.01189 
G1 X-2.322 Y2.536 E0.01634 
G1 X-4.702 Y2.636 F180.000 

G1 X-4.292 Y1.926 E0.01049 F180.000 
G1 X-6.156 Y1.926 E0.02387 
G1 X-5.804 Y2.536 E0.00901 
G1 X-6.443 Y3.642 E0.01634 
G1 X-7.372 Y3.642 E0.01189 
G1 X-8.010 Y4.748 E0.01634 
G1 X-7.546 Y5.552 E0.01189 
G1 X-8.184 Y6.658 E0.01634 
G1 X-9.113 Y6.658 E0.01189 
G1 X-9.751 Y7.763 E0.01634 
G1 X-9.287 Y8.568 E0.01189 
G1 X-9.925 Y9.674 E0.01634 
G1 X-10.854 Y9.674 E0.01189 
G1 X-10.944 Y9.830 E0.00231 
G1 X-10.944 Y11.025 E0.01530 
G1 X-9.545 Y11.025 E0.01791 
G1 X-9.287 Y10.578 E0.00660 
G1 X-9.751 Y9.774 E0.01189 
G1 X-9.113 Y8.668 E0.01634 
G1 X-8.184 Y8.668 E0.01189 
G1 X-7.546 Y7.562 E0.01634 
G1 X-8.010 Y6.758 E0.01189 
G1 X-7.372 Y5.652 E0.01634 
G1 X-6.443 Y5.652 E0.01189 
G1 X-5.804 Y4.547 E0.01634 
G1 X-6.269 Y3.742 E0.01189 
G1 X-5.630 Y2.636 E0.01634 
G1 X-4.702 Y2.636 E0.01189 
G1 X-8.010 Y2.737 F180.000 
G1 X-7.542 Y1.926 E0.01198 F180.000 
G1 X-7.774 Y1.926 E0.00297 
G1 X-8.184 Y2.636 E0.01049 
G1 X-9.113 Y2.636 E0.01189 
G1 X-9.751 Y3.742 E0.01634 
G1 X-9.287 Y4.547 E0.01189 
G1 X-9.925 Y5.652 E0.01634 
G1 X-10.854 Y5.652 E0.01189 
G1 X-10.944 Y5.808 E0.00231 
G1 X-10.944 Y7.819 E0.02574 
G1 X-10.854 Y7.663 E0.00231 
G1 X-9.925 Y7.663 E0.01189 
G1 X-9.287 Y6.557 E0.01634 
G1 X-9.751 Y5.753 E0.01189 
G1 X-9.113 Y4.647 E0.01634 
G1 X-8.184 Y4.647 E0.01189 
G1 X-7.546 Y3.541 E0.01634 
G1 X-8.010 Y2.737 E0.01189 
G1 X-9.287 Y2.536 F180.000 
G1 X-9.639 Y1.926 E0.00901 F180.000 
G1 X-10.944 Y1.926 E0.01671 
G1 X-10.944 Y3.798 E0.02395 
G1 X-10.854 Y3.642 E0.00231 
G1 X-9.925 Y3.642 E0.01189 
G1 X-9.287 Y2.536 E0.01634 
G1 X-1.846 Y8.668 F180.000 
G1 X-1.846 Y6.658 E0.02574 F180.000 
G1 X-2.148 Y6.658 E0.00386 
G1 X-2.786 Y7.764 E0.01634 
G1 X-2.322 Y8.568 E0.01189 
G1 X-2.960 Y9.674 E0.01634 
G1 X-3.889 Y9.674 E0.01189 
G1 X-4.528 Y10.779 E0.01634 
G1 X-4.386 Y11.025 E0.00363 
G1 X-2.580 Y11.025 E0.02312 
G1 X-2.322 Y10.578 E0.00660 
G1 X-2.786 Y9.774 E0.01189 
G1 X-2.148 Y8.668 E0.01634 
G1 X-1.846 Y8.668 E0.00386 
G1 X-1.846 Y11.025 F180.000 
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G1 X-1.846 Y10.679 E0.00443 
F180.000 
G1 X-2.148 Y10.679 E0.00386 
G1 X-2.348 Y11.025 E0.00511 
G1 X-1.846 Y11.025 E0.00642 
G1 X-0.981 Y0.476 F180.000 
G1 X-0.369 Y0.045 F180.000 
G1 X-0.035 Y-0.768 F180.000 
G1 X-0.035 Y-0.792 F180.000 
G1 X-0.304 Y-1.061 F180.000 
G1 X-1.554 Y-11.226 F180.000 
G1 X-1.554 Y-1.725 E0.12161 F180.000 
G1 X-11.054 Y-1.725 E0.12161 
G1 X-11.054 Y-11.226 E0.12161 
G1 X-1.578 Y-11.226 E0.12130 
G1 X-1.384 Y-11.396 F180.000 
G1 X-1.384 Y-1.556 E0.08679 F180.000 
G1 X-11.224 Y-1.556 E0.08679 
G1 X-11.224 Y-11.396 E0.08679 
G1 X-1.408 Y-11.396 E0.08657 
G1 X-1.464 Y-11.257 F180.000 
G1 X-1.755 Y-10.315 F180.000 
G1 X-2.057 Y-10.315 E0.00386 
F180.000 
G1 X-2.695 Y-9.209 E0.01634 
G1 X-2.231 Y-8.405 E0.01189 
G1 X-2.870 Y-7.299 E0.01634 
G1 X-3.798 Y-7.299 E0.01189 
G1 X-4.437 Y-6.193 E0.01634 
G1 X-3.972 Y-5.389 E0.01189 
G1 X-4.611 Y-4.283 E0.01634 
G1 X-5.539 Y-4.283 E0.01189 
G1 X-6.178 Y-3.177 E0.01634 
G1 X-5.714 Y-2.373 E0.01189 
G1 X-5.971 Y-1.926 E0.00660 
G1 X-5.739 Y-1.926 E0.00297 
G1 X-5.539 Y-2.272 E0.00511 
G1 X-4.611 Y-2.272 E0.01189 
G1 X-3.972 Y-3.378 E0.01634 
G1 X-4.437 Y-4.182 E0.01189 
G1 X-3.798 Y-5.288 E0.01634 
G1 X-2.870 Y-5.288 E0.01189 
G1 X-2.231 Y-6.394 E0.01634 
G1 X-2.695 Y-7.198 E0.01189 
G1 X-2.057 Y-8.304 E0.01634 
G1 X-1.755 Y-8.304 E0.00386 
G1 X-1.755 Y-10.315 E0.02574 
G1 X-2.231 Y-10.415 F180.000 
G1 X-2.583 Y-11.025 E0.00901 
F180.000 
G1 X-3.969 Y-11.025 E0.01774 
G1 X-4.437 Y-10.214 E0.01198 
G1 X-3.972 Y-9.410 E0.01189 
G1 X-4.611 Y-8.304 E0.01634 
G1 X-5.539 Y-8.304 E0.01189 
G1 X-6.178 Y-7.198 E0.01634 
G1 X-5.714 Y-6.394 E0.01189 
G1 X-6.352 Y-5.288 E0.01634 
G1 X-7.281 Y-5.288 E0.01189 
G1 X-7.919 Y-4.182 E0.01634 
G1 X-7.455 Y-3.378 E0.01189 
G1 X-8.093 Y-2.272 E0.01634 
G1 X-9.022 Y-2.272 E0.01189 
G1 X-9.222 Y-1.926 E0.00511 
G1 X-7.778 Y-1.926 E0.01848 
G1 X-7.919 Y-2.172 E0.00363 
G1 X-7.281 Y-3.278 E0.01634 
G1 X-6.352 Y-3.278 E0.01189 
G1 X-5.714 Y-4.383 E0.01634 
G1 X-6.178 Y-5.188 E0.01189 

G1 X-5.539 Y-6.294 E0.01634 
G1 X-4.611 Y-6.294 E0.01189 
G1 X-3.972 Y-7.399 E0.01634 
G1 X-4.437 Y-8.204 E0.01189 
G1 X-3.798 Y-9.309 E0.01634 
G1 X-2.870 Y-9.309 E0.01189 
G1 X-2.231 Y-10.415 E0.01634 
G1 X-4.611 Y-10.315 F180.000 
G1 X-4.201 Y-11.025 E0.01049 
F180.000 
G1 X-6.065 Y-11.025 E0.02387 
G1 X-5.714 Y-10.415 E0.00901 
G1 X-6.352 Y-9.309 E0.01634 
G1 X-7.281 Y-9.309 E0.01189 
G1 X-7.919 Y-8.204 E0.01634 
G1 X-7.455 Y-7.399 E0.01189 
G1 X-8.093 Y-6.294 E0.01634 
G1 X-9.022 Y-6.294 E0.01189 
G1 X-9.660 Y-5.188 E0.01634 
G1 X-9.196 Y-4.383 E0.01189 
G1 X-9.835 Y-3.278 E0.01634 
G1 X-10.763 Y-3.278 E0.01189 
G1 X-10.853 Y-3.121 E0.00231 
G1 X-10.853 Y-1.926 E0.01530 
G1 X-9.454 Y-1.926 E0.01791 
G1 X-9.196 Y-2.373 E0.00660 
G1 X-9.660 Y-3.177 E0.01189 
G1 X-9.022 Y-4.283 E0.01634 
G1 X-8.093 Y-4.283 E0.01189 
G1 X-7.455 Y-5.389 E0.01634 
G1 X-7.919 Y-6.193 E0.01189 
G1 X-7.281 Y-7.299 E0.01634 
G1 X-6.352 Y-7.299 E0.01189 
G1 X-5.714 Y-8.405 E0.01634 
G1 X-6.178 Y-9.209 E0.01189 
G1 X-5.539 Y-10.315 E0.01634 
G1 X-4.611 Y-10.315 E0.01189 
G1 X-7.919 Y-10.214 F180.000 
G1 X-7.451 Y-11.025 E0.01198 
F180.000 
G1 X-7.683 Y-11.025 E0.00297 
G1 X-8.093 Y-10.315 E0.01049 
G1 X-9.022 Y-10.315 E0.01189 
G1 X-9.660 Y-9.209 E0.01634 
G1 X-9.196 Y-8.405 E0.01189 
G1 X-9.835 Y-7.299 E0.01634 
G1 X-10.763 Y-7.299 E0.01189 
G1 X-10.853 Y-7.143 E0.00231 
G1 X-10.853 Y-5.132 E0.02574 
G1 X-10.763 Y-5.288 E0.00231 
G1 X-9.835 Y-5.288 E0.01189 
G1 X-9.196 Y-6.394 E0.01634 
G1 X-9.660 Y-7.198 E0.01189 
G1 X-9.022 Y-8.304 E0.01634 
G1 X-8.093 Y-8.304 E0.01189 
G1 X-7.455 Y-9.410 E0.01634 
G1 X-7.919 Y-10.214 E0.01189 
G1 X-9.196 Y-10.415 F180.000 
G1 X-9.548 Y-11.025 E0.00901 
F180.000 
G1 X-10.853 Y-11.025 E0.01671 
G1 X-10.853 Y-9.153 E0.02395 
G1 X-10.763 Y-9.309 E0.00231 
G1 X-9.835 Y-9.309 E0.01189 
G1 X-9.196 Y-10.415 E0.01634 
G1 X-1.755 Y-4.283 F180.000 
G1 X-1.755 Y-6.294 E0.02574 F180.000 
G1 X-2.057 Y-6.294 E0.00386 
G1 X-2.695 Y-5.188 E0.01634 
G1 X-2.231 Y-4.383 E0.01189 

G1 X-2.870 Y-3.278 E0.01634 
G1 X-3.798 Y-3.278 E0.01189 
G1 X-4.437 Y-2.172 E0.01634 
G1 X-4.295 Y-1.926 E0.00363 
G1 X-2.489 Y-1.926 E0.02312 
G1 X-2.231 Y-2.373 E0.00660 
G1 X-2.695 Y-3.177 E0.01189 
G1 X-2.057 Y-4.283 E0.01634 
G1 X-1.755 Y-4.283 E0.00386 
G1 X-1.755 Y-1.926 F180.000 
G1 X-1.755 Y-2.272 E0.00443 F180.000 
G1 X-2.057 Y-2.272 E0.00386 
G1 X-2.257 Y-1.926 E0.00511 
G1 X-1.755 Y-1.926 E0.00642 
G1 X-0.304 Y-11.890 F180.000 
G1 X-0.023 Y-12.171 F180.000 
G1 X-0.002 Y-13.297 F180.000 
G1 X0.831 Y-12.464 F180.000 
G1 X10.996 Y-11.214 F180.000 
G1 X10.996 Y-1.713 E0.12161 
F180.000 
G1 X1.495 Y-1.713 E0.12161 
G1 X1.495 Y-11.214 E0.12161 
G1 X10.972 Y-11.214 E0.12130 
G1 X11.166 Y-11.384 F180.000 
G1 X11.166 Y-1.544 E0.08679 
F180.000 
G1 X1.326 Y-1.544 E0.08679 
G1 X1.326 Y-11.384 E0.08679 
G1 X11.142 Y-11.384 E0.08657 
G1 X11.086 Y-11.245 F180.000 
G1 X10.795 Y-10.303 F180.000 
G1 X10.493 Y-10.303 E0.00386 
F180.000 
G1 X9.854 Y-9.197 E0.01634 
G1 X10.319 Y-8.393 E0.01189 
G1 X9.680 Y-7.287 E0.01634 
G1 X8.751 Y-7.287 E0.01189 
G1 X8.113 Y-6.181 E0.01634 
G1 X8.577 Y-5.377 E0.01189 
G1 X7.939 Y-4.271 E0.01634 
G1 X7.010 Y-4.271 E0.01189 
G1 X6.372 Y-3.165 E0.01634 
G1 X6.836 Y-2.361 E0.01189 
G1 X6.578 Y-1.914 E0.00660 
G1 X6.811 Y-1.914 E0.00297 
G1 X7.010 Y-2.260 E0.00511 
G1 X7.939 Y-2.260 E0.01189 
G1 X8.577 Y-3.366 E0.01634 
G1 X8.113 Y-4.170 E0.01189 
G1 X8.751 Y-5.276 E0.01634 
G1 X9.680 Y-5.276 E0.01189 
G1 X10.319 Y-6.382 E0.01634 
G1 X9.854 Y-7.186 E0.01189 
G1 X10.493 Y-8.292 E0.01634 
G1 X10.795 Y-8.292 E0.00386 
G1 X10.795 Y-10.303 E0.02574 
G1 X10.319 Y-10.403 F180.000 
G1 X9.967 Y-11.013 E0.00901 
F180.000 
G1 X8.581 Y-11.013 E0.01774 
G1 X8.113 Y-10.202 E0.01198 
G1 X8.577 Y-9.398 E0.01189 
G1 X7.939 Y-8.292 E0.01634 
G1 X7.010 Y-8.292 E0.01189 
G1 X6.372 Y-7.186 E0.01634 
G1 X6.836 Y-6.382 E0.01189 
G1 X6.198 Y-5.276 E0.01634 
G1 X5.269 Y-5.276 E0.01189 
G1 X4.631 Y-4.170 E0.01634 
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G1 X5.095 Y-3.366 E0.01189 
G1 X4.456 Y-2.260 E0.01634 
G1 X3.528 Y-2.260 E0.01189 
G1 X3.328 Y-1.914 E0.00511 
G1 X4.772 Y-1.914 E0.01848 
G1 X4.631 Y-2.160 E0.00363 
G1 X5.269 Y-3.266 E0.01634 
G1 X6.198 Y-3.266 E0.01189 
G1 X6.836 Y-4.371 E0.01634 
G1 X6.372 Y-5.176 E0.01189 
G1 X7.010 Y-6.281 E0.01634 
G1 X7.939 Y-6.281 E0.01189 
G1 X8.577 Y-7.387 E0.01634 
G1 X8.113 Y-8.192 E0.01189 
G1 X8.751 Y-9.297 E0.01634 
G1 X9.680 Y-9.297 E0.01189 
G1 X10.319 Y-10.403 E0.01634 
G1 X7.939 Y-10.303 F180.000 
G1 X8.349 Y-11.013 E0.01049 
F180.000 
G1 X6.484 Y-11.013 E0.02387 
G1 X6.836 Y-10.403 E0.00901 
G1 X6.198 Y-9.297 E0.01634 
G1 X5.269 Y-9.297 E0.01189 
G1 X4.631 Y-8.192 E0.01634 
G1 X5.095 Y-7.387 E0.01189 
G1 X4.456 Y-6.281 E0.01634 
G1 X3.528 Y-6.281 E0.01189 
G1 X2.889 Y-5.176 E0.01634 
G1 X3.354 Y-4.371 E0.01189 
G1 X2.715 Y-3.266 E0.01634 
G1 X1.786 Y-3.266 E0.01189 
G1 X1.696 Y-3.109 E0.00231 
G1 X1.696 Y-1.914 E0.01530 
G1 X3.096 Y-1.914 E0.01791 
G1 X3.354 Y-2.361 E0.00660 
G1 X2.889 Y-3.165 E0.01189 
G1 X3.528 Y-4.271 E0.01634 
G1 X4.456 Y-4.271 E0.01189 
G1 X5.095 Y-5.377 E0.01634 
G1 X4.631 Y-6.181 E0.01189 
G1 X5.269 Y-7.287 E0.01634 
G1 X6.198 Y-7.287 E0.01189 
G1 X6.836 Y-8.393 E0.01634 
G1 X6.372 Y-9.197 E0.01189 
G1 X7.010 Y-10.303 E0.01634 
G1 X7.939 Y-10.303 E0.01189 
G1 X4.631 Y-10.202 F180.000 
G1 X5.098 Y-11.013 E0.01198 
F180.000 
G1 X4.866 Y-11.013 E0.00297 
G1 X4.456 Y-10.303 E0.01049 
G1 X3.528 Y-10.303 E0.01189 
G1 X2.889 Y-9.197 E0.01634 
G1 X3.354 Y-8.393 E0.01189 
G1 X2.715 Y-7.287 E0.01634 
G1 X1.786 Y-7.287 E0.01189 
G1 X1.696 Y-7.131 E0.00231 
G1 X1.696 Y-5.120 E0.02574 
G1 X1.786 Y-5.276 E0.00231 
G1 X2.715 Y-5.276 E0.01189 
G1 X3.354 Y-6.382 E0.01634 
G1 X2.889 Y-7.186 E0.01189 
G1 X3.528 Y-8.292 E0.01634 
G1 X4.456 Y-8.292 E0.01189 
G1 X5.095 Y-9.398 E0.01634 
G1 X4.631 Y-10.202 E0.01189 
G1 X3.354 Y-10.403 F180.000 
G1 X3.002 Y-11.013 E0.00901 
F180.000 

G1 X1.696 Y-11.013 E0.01671 
G1 X1.696 Y-9.141 E0.02395 
G1 X1.786 Y-9.297 E0.00231 
G1 X2.715 Y-9.297 E0.01189 
G1 X3.354 Y-10.403 E0.01634 
G1 X10.795 Y-4.271 F180.000 
G1 X10.795 Y-6.281 E0.02574 
F180.000 
G1 X10.493 Y-6.281 E0.00386 
G1 X9.854 Y-5.176 E0.01634 
G1 X10.319 Y-4.371 E0.01189 
G1 X9.680 Y-3.266 E0.01634 
G1 X8.751 Y-3.266 E0.01189 
G1 X8.113 Y-2.160 E0.01634 
G1 X8.255 Y-1.914 E0.00363 
G1 X10.061 Y-1.914 E0.02312 
G1 X10.319 Y-2.361 E0.00660 
G1 X9.854 Y-3.165 E0.01189 
G1 X10.493 Y-4.271 E0.01634 
G1 X10.795 Y-4.271 E0.00386 
G1 X10.795 Y-1.914 F180.000 
G1 X10.795 Y-2.260 E0.00443 
F180.000 
G1 X10.493 Y-2.260 E0.00386 
G1 X10.293 Y-1.914 E0.00511 
G1 X10.795 Y-1.914 E0.00642 
G1 Z0.360 F180.000 
G1 X11.660 Y-0.464 F180.000 
G1 X11.660 Y-0.028 F180.000 
G1 X11.809 Y-0.041 F180.000 
G1 X11.809 Y0.407 F180.000 
G1 X11.145 Y1.656 F180.000 
G1 X11.145 Y11.157 E0.12161 
F180.000 
G1 X1.645 Y11.157 E0.12161 
G1 X1.645 Y1.656 E0.12161 
G1 X11.121 Y1.656 E0.12130 
G1 X11.315 Y1.487 F180.000 
G1 X11.315 Y11.327 E0.08679 
F180.000 
G1 X1.475 Y11.327 E0.08679 
G1 X1.475 Y1.487 E0.08679 
G1 X11.291 Y1.487 E0.08657 
G1 X11.235 Y1.625 F180.000 
G1 X10.642 Y2.567 F180.000 
G1 X10.232 Y1.857 E0.01049 F180.000 
G1 X10.944 Y1.857 E0.00911 
G1 X10.944 Y2.567 E0.00909 
G1 X10.642 Y2.567 E0.00386 
G1 X10.004 Y3.472 F180.000 
G1 X10.642 Y4.578 E0.01634 F180.000 
G1 X10.944 Y4.578 E0.00386 
G1 X10.944 Y6.589 E0.02574 
G1 X10.642 Y6.589 E0.00386 
G1 X10.004 Y5.483 E0.01634 
G1 X10.468 Y4.679 E0.01189 
G1 X9.830 Y3.573 E0.01634 
G1 X8.901 Y3.573 E0.01189 
G1 X8.263 Y2.467 E0.01634 
G1 X8.614 Y1.857 E0.00901 
G1 X10.000 Y1.857 E0.01774 
G1 X10.468 Y2.668 E0.01198 
G1 X10.004 Y3.472 E0.01189 
G1 X7.160 Y2.567 F180.000 
G1 X8.088 Y2.567 E0.01189 F180.000 
G1 X8.727 Y3.673 E0.01634 
G1 X8.263 Y4.477 E0.01189 
G1 X8.901 Y5.583 E0.01634 
G1 X9.830 Y5.583 E0.01189 
G1 X10.468 Y6.689 E0.01634 

G1 X10.004 Y7.493 E0.01189 
G1 X10.642 Y8.599 E0.01634 
G1 X10.944 Y8.599 E0.00386 
G1 X10.944 Y10.610 E0.02574 
G1 X10.642 Y10.610 E0.00386 
G1 X10.004 Y9.504 E0.01634 
G1 X10.468 Y8.700 E0.01189 
G1 X9.830 Y7.594 E0.01634 
G1 X8.901 Y7.594 E0.01189 
G1 X8.263 Y6.488 E0.01634 
G1 X8.727 Y5.684 E0.01189 
G1 X8.088 Y4.578 E0.01634 
G1 X7.160 Y4.578 E0.01189 
G1 X6.521 Y3.472 E0.01634 
G1 X6.986 Y2.668 E0.01189 
G1 X6.518 Y1.857 E0.01198 
G1 X6.750 Y1.857 E0.00297 
G1 X7.160 Y2.567 E0.01049 
G1 X4.780 Y2.467 F180.000 
G1 X5.419 Y3.573 E0.01634 F180.000 
G1 X6.347 Y3.573 E0.01189 
G1 X6.986 Y4.679 E0.01634 
G1 X6.521 Y5.483 E0.01189 
G1 X7.160 Y6.589 E0.01634 
G1 X8.088 Y6.589 E0.01189 
G1 X8.727 Y7.694 E0.01634 
G1 X8.263 Y8.499 E0.01189 
G1 X8.901 Y9.605 E0.01634 
G1 X9.830 Y9.605 E0.01189 
G1 X10.468 Y10.710 E0.01634 
G1 X10.327 Y10.956 E0.00363 
G1 X8.520 Y10.956 E0.02312 
G1 X8.263 Y10.509 E0.00660 
G1 X8.727 Y9.705 E0.01189 
G1 X8.088 Y8.599 E0.01634 
G1 X7.160 Y8.599 E0.01189 
G1 X6.521 Y7.493 E0.01634 
G1 X6.986 Y6.689 E0.01189 
G1 X6.347 Y5.583 E0.01634 
G1 X5.419 Y5.583 E0.01189 
G1 X4.780 Y4.477 E0.01634 
G1 X5.244 Y3.673 E0.01189 
G1 X4.606 Y2.567 E0.01634 
G1 X3.677 Y2.567 E0.01189 
G1 X3.267 Y1.857 E0.01049 
G1 X5.132 Y1.857 E0.02387 
G1 X4.780 Y2.467 E0.00901 
G1 X3.503 Y2.668 F180.000 
G1 X3.039 Y3.472 E0.01189 F180.000 
G1 X3.677 Y4.578 E0.01634 
G1 X4.606 Y4.578 E0.01189 
G1 X5.244 Y5.684 E0.01634 
G1 X4.780 Y6.488 E0.01189 
G1 X5.419 Y7.594 E0.01634 
G1 X6.347 Y7.594 E0.01189 
G1 X6.986 Y8.700 E0.01634 
G1 X6.521 Y9.504 E0.01189 
G1 X7.160 Y10.610 E0.01634 
G1 X8.088 Y10.610 E0.01189 
G1 X8.288 Y10.956 E0.00511 
G1 X6.844 Y10.956 E0.01848 
G1 X6.986 Y10.710 E0.00363 
G1 X6.347 Y9.605 E0.01634 
G1 X5.419 Y9.605 E0.01189 
G1 X4.780 Y8.499 E0.01634 
G1 X5.244 Y7.694 E0.01189 
G1 X4.606 Y6.589 E0.01634 
G1 X3.677 Y6.589 E0.01189 
G1 X3.039 Y5.483 E0.01634 
G1 X3.503 Y4.679 E0.01189 
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G1 X2.865 Y3.573 E0.01634 
G1 X1.936 Y3.573 E0.01189 
G1 X1.846 Y3.417 E0.00231 
G1 X1.846 Y1.857 E0.01996 
G1 X3.035 Y1.857 E0.01522 
G1 X3.503 Y2.668 E0.01198 
G1 X1.936 Y5.583 F180.000 
G1 X2.865 Y5.583 E0.01189 F180.000 
G1 X3.503 Y6.689 E0.01634 
G1 X3.039 Y7.493 E0.01189 
G1 X3.677 Y8.599 E0.01634 
G1 X4.606 Y8.599 E0.01189 
G1 X5.244 Y9.705 E0.01634 
G1 X4.780 Y10.509 E0.01189 
G1 X5.038 Y10.956 E0.00660 
G1 X4.806 Y10.956 E0.00297 
G1 X4.606 Y10.610 E0.00511 
G1 X3.677 Y10.610 E0.01189 
G1 X3.039 Y9.504 E0.01634 
G1 X3.503 Y8.700 E0.01189 
G1 X2.865 Y7.594 E0.01634 
G1 X1.936 Y7.594 E0.01189 
G1 X1.846 Y7.438 E0.00231 
G1 X1.846 Y5.427 E0.02574 
G1 X1.936 Y5.583 E0.00231 
G1 X1.936 Y9.605 F180.000 
G1 X2.865 Y9.605 E0.01189 F180.000 
G1 X3.503 Y10.710 E0.01634 
G1 X3.362 Y10.956 E0.00363 
G1 X1.846 Y10.956 E0.01940 
G1 X1.846 Y9.448 E0.01929 
G1 X1.936 Y9.605 E0.00231 
G1 X0.395 Y0.992 F180.000 
G1 X-0.003 Y0.992 F180.000 
G1 X0.000 Y1.061 F180.000 
G1 X-0.395 Y1.061 F180.000 
G1 X-1.645 Y1.725 F180.000 
G1 X-1.645 Y11.226 E0.12161 
F180.000 
G1 X-11.145 Y11.226 E0.12161 
G1 X-11.145 Y1.725 E0.12161 
G1 X-1.669 Y1.725 E0.12130 
G1 X-1.475 Y1.556 F180.000 
G1 X-1.475 Y11.396 E0.08679 
F180.000 
G1 X-11.315 Y11.396 E0.08679 
G1 X-11.315 Y1.556 E0.08679 
G1 X-1.499 Y1.556 E0.08657 
G1 X-1.555 Y1.694 F180.000 
G1 X-2.148 Y2.636 F180.000 
G1 X-2.558 Y1.926 E0.01049 F180.000 
G1 X-1.846 Y1.926 E0.00911 
G1 X-1.846 Y2.636 E0.00909 
G1 X-2.148 Y2.636 E0.00386 
G1 X-2.786 Y3.541 F180.000 
G1 X-2.148 Y4.647 E0.01634 F180.000 
G1 X-1.846 Y4.647 E0.00386 
G1 X-1.846 Y6.658 E0.02574 
G1 X-2.148 Y6.658 E0.00386 
G1 X-2.786 Y5.552 E0.01634 
G1 X-2.322 Y4.748 E0.01189 
G1 X-2.960 Y3.642 E0.01634 
G1 X-3.889 Y3.642 E0.01189 
G1 X-4.528 Y2.536 E0.01634 
G1 X-4.176 Y1.926 E0.00901 
G1 X-2.790 Y1.926 E0.01774 
G1 X-2.322 Y2.737 E0.01198 
G1 X-2.786 Y3.541 E0.01189 
G1 X-5.630 Y2.636 F180.000 
G1 X-4.702 Y2.636 E0.01189 F180.000 

G1 X-4.063 Y3.742 E0.01634 
G1 X-4.528 Y4.547 E0.01189 
G1 X-3.889 Y5.652 E0.01634 
G1 X-2.960 Y5.652 E0.01189 
G1 X-2.322 Y6.758 E0.01634 
G1 X-2.786 Y7.562 E0.01189 
G1 X-2.148 Y8.668 E0.01634 
G1 X-1.846 Y8.668 E0.00386 
G1 X-1.846 Y10.679 E0.02574 
G1 X-2.148 Y10.679 E0.00386 
G1 X-2.786 Y9.573 E0.01634 
G1 X-2.322 Y8.769 E0.01189 
G1 X-2.960 Y7.663 E0.01634 
G1 X-3.889 Y7.663 E0.01189 
G1 X-4.528 Y6.557 E0.01634 
G1 X-4.063 Y5.753 E0.01189 
G1 X-4.702 Y4.647 E0.01634 
G1 X-5.630 Y4.647 E0.01189 
G1 X-6.269 Y3.541 E0.01634 
G1 X-5.804 Y2.737 E0.01189 
G1 X-6.272 Y1.926 E0.01198 
G1 X-6.040 Y1.926 E0.00297 
G1 X-5.630 Y2.636 E0.01049 
G1 X-8.010 Y2.536 F180.000 
G1 X-7.372 Y3.642 E0.01634 F180.000 
G1 X-6.443 Y3.642 E0.01189 
G1 X-5.804 Y4.748 E0.01634 
G1 X-6.269 Y5.552 E0.01189 
G1 X-5.630 Y6.658 E0.01634 
G1 X-4.702 Y6.658 E0.01189 
G1 X-4.063 Y7.764 E0.01634 
G1 X-4.528 Y8.568 E0.01189 
G1 X-3.889 Y9.674 E0.01634 
G1 X-2.960 Y9.674 E0.01189 
G1 X-2.322 Y10.779 E0.01634 
G1 X-2.464 Y11.025 E0.00363 
G1 X-4.270 Y11.025 E0.02312 
G1 X-4.528 Y10.578 E0.00660 
G1 X-4.063 Y9.774 E0.01189 
G1 X-4.702 Y8.668 E0.01634 
G1 X-5.630 Y8.668 E0.01189 
G1 X-6.269 Y7.562 E0.01634 
G1 X-5.804 Y6.758 E0.01189 
G1 X-6.443 Y5.652 E0.01634 
G1 X-7.372 Y5.652 E0.01189 
G1 X-8.010 Y4.547 E0.01634 
G1 X-7.546 Y3.742 E0.01189 
G1 X-8.184 Y2.636 E0.01634 
G1 X-9.113 Y2.636 E0.01189 
G1 X-9.523 Y1.926 E0.01049 
G1 X-7.658 Y1.926 E0.02387 
G1 X-8.010 Y2.536 E0.00901 
G1 X-9.287 Y2.737 F180.000 
G1 X-9.751 Y3.541 E0.01189 F180.000 
G1 X-9.113 Y4.647 E0.01634 
G1 X-8.184 Y4.647 E0.01189 
G1 X-7.546 Y5.753 E0.01634 
G1 X-8.010 Y6.557 E0.01189 
G1 X-7.372 Y7.663 E0.01634 
G1 X-6.443 Y7.663 E0.01189 
G1 X-5.804 Y8.769 E0.01634 
G1 X-6.269 Y9.573 E0.01189 
G1 X-5.630 Y10.679 E0.01634 
G1 X-4.702 Y10.679 E0.01189 
G1 X-4.502 Y11.025 E0.00511 
G1 X-5.946 Y11.025 E0.01848 
G1 X-5.804 Y10.779 E0.00363 
G1 X-6.443 Y9.674 E0.01634 
G1 X-7.372 Y9.674 E0.01189 
G1 X-8.010 Y8.568 E0.01634 

G1 X-7.546 Y7.764 E0.01189 
G1 X-8.184 Y6.658 E0.01634 
G1 X-9.113 Y6.658 E0.01189 
G1 X-9.751 Y5.552 E0.01634 
G1 X-9.287 Y4.748 E0.01189 
G1 X-9.925 Y3.642 E0.01634 
G1 X-10.854 Y3.642 E0.01189 
G1 X-10.944 Y3.486 E0.00231 
G1 X-10.944 Y1.926 E0.01996 
G1 X-9.755 Y1.926 E0.01522 
G1 X-9.287 Y2.737 E0.01198 
G1 X-10.854 Y5.652 F180.000 
G1 X-9.925 Y5.652 E0.01189 F180.000 
G1 X-9.287 Y6.758 E0.01634 
G1 X-9.751 Y7.562 E0.01189 
G1 X-9.113 Y8.668 E0.01634 
G1 X-8.184 Y8.668 E0.01189 
G1 X-7.546 Y9.774 E0.01634 
G1 X-8.010 Y10.578 E0.01189 
G1 X-7.752 Y11.025 E0.00660 
G1 X-7.985 Y11.025 E0.00297 
G1 X-8.184 Y10.679 E0.00511 
G1 X-9.113 Y10.679 E0.01189 
G1 X-9.751 Y9.573 E0.01634 
G1 X-9.287 Y8.769 E0.01189 
G1 X-9.925 Y7.663 E0.01634 
G1 X-10.854 Y7.663 E0.01189 
G1 X-10.944 Y7.507 E0.00231 
G1 X-10.944 Y5.496 E0.02574 
G1 X-10.854 Y5.652 E0.00231 
G1 X-10.854 Y9.674 F180.000 
G1 X-9.925 Y9.674 E0.01189 F180.000 
G1 X-9.287 Y10.779 E0.01634 
G1 X-9.429 Y11.025 E0.00363 
G1 X-10.944 Y11.025 E0.01940 
G1 X-10.944 Y9.517 E0.01929 
G1 X-10.854 Y9.674 E0.00231 
G1 X-0.981 Y0.476 F180.000 
G1 X-0.369 Y0.045 F180.000 
G1 X-0.035 Y-0.768 F180.000 
G1 X-0.035 Y-0.792 F180.000 
G1 X-0.304 Y-1.061 F180.000 
G1 X-1.554 Y-11.226 F180.000 
G1 X-1.554 Y-1.725 E0.12161 F180.000 
G1 X-11.054 Y-1.725 E0.12161 
G1 X-11.054 Y-11.226 E0.12161 
G1 X-1.578 Y-11.226 E0.12130 
G1 X-1.384 Y-11.396 F180.000 
G1 X-1.384 Y-1.556 E0.08679 F180.000 
G1 X-11.224 Y-1.556 E0.08679 
G1 X-11.224 Y-11.396 E0.08679 
G1 X-1.408 Y-11.396 E0.08657 
G1 X-1.464 Y-11.257 F180.000 
G1 X-2.057 Y-10.315 F180.000 
G1 X-2.467 Y-11.025 E0.01049 
F180.000 
G1 X-1.755 Y-11.025 E0.00911 
G1 X-1.755 Y-10.315 E0.00909 
G1 X-2.057 Y-10.315 E0.00386 
G1 X-2.695 Y-9.410 F180.000 
G1 X-2.057 Y-8.304 E0.01634 F180.000 
G1 X-1.755 Y-8.304 E0.00386 
G1 X-1.755 Y-6.294 E0.02574 
G1 X-2.057 Y-6.294 E0.00386 
G1 X-2.695 Y-7.399 E0.01634 
G1 X-2.231 Y-8.204 E0.01189 
G1 X-2.870 Y-9.309 E0.01634 
G1 X-3.798 Y-9.309 E0.01189 
G1 X-4.437 Y-10.415 E0.01634 
G1 X-4.085 Y-11.025 E0.00901 
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G1 X-2.699 Y-11.025 E0.01774 
G1 X-2.231 Y-10.214 E0.01198 
G1 X-2.695 Y-9.410 E0.01189 
G1 X-5.539 Y-10.315 F180.000 
G1 X-4.611 Y-10.315 E0.01189 
F180.000 
G1 X-3.972 Y-9.209 E0.01634 
G1 X-4.437 Y-8.405 E0.01189 
G1 X-3.798 Y-7.299 E0.01634 
G1 X-2.870 Y-7.299 E0.01189 
G1 X-2.231 Y-6.193 E0.01634 
G1 X-2.695 Y-5.389 E0.01189 
G1 X-2.057 Y-4.283 E0.01634 
G1 X-1.755 Y-4.283 E0.00386 
G1 X-1.755 Y-2.272 E0.02574 
G1 X-2.057 Y-2.272 E0.00386 
G1 X-2.695 Y-3.378 E0.01634 
G1 X-2.231 Y-4.182 E0.01189 
G1 X-2.870 Y-5.288 E0.01634 
G1 X-3.798 Y-5.288 E0.01189 
G1 X-4.437 Y-6.394 E0.01634 
G1 X-3.972 Y-7.198 E0.01189 
G1 X-4.611 Y-8.304 E0.01634 
G1 X-5.539 Y-8.304 E0.01189 
G1 X-6.178 Y-9.410 E0.01634 
G1 X-5.714 Y-10.214 E0.01189 
G1 X-6.182 Y-11.025 E0.01198 
G1 X-5.949 Y-11.025 E0.00297 
G1 X-5.539 Y-10.315 E0.01049 
G1 X-7.919 Y-10.415 F180.000 
G1 X-7.281 Y-9.309 E0.01634 F180.000 
G1 X-6.352 Y-9.309 E0.01189 
G1 X-5.714 Y-8.204 E0.01634 
G1 X-6.178 Y-7.399 E0.01189 
G1 X-5.539 Y-6.294 E0.01634 
G1 X-4.611 Y-6.294 E0.01189 
G1 X-3.972 Y-5.188 E0.01634 
G1 X-4.437 Y-4.383 E0.01189 
G1 X-3.798 Y-3.278 E0.01634 
G1 X-2.870 Y-3.278 E0.01189 
G1 X-2.231 Y-2.172 E0.01634 
G1 X-2.373 Y-1.926 E0.00363 
G1 X-4.179 Y-1.926 E0.02312 
G1 X-4.437 Y-2.373 E0.00660 
G1 X-3.972 Y-3.177 E0.01189 
G1 X-4.611 Y-4.283 E0.01634 
G1 X-5.539 Y-4.283 E0.01189 
G1 X-6.178 Y-5.389 E0.01634 
G1 X-5.714 Y-6.193 E0.01189 
G1 X-6.352 Y-7.299 E0.01634 
G1 X-7.281 Y-7.299 E0.01189 
G1 X-7.919 Y-8.405 E0.01634 
G1 X-7.455 Y-9.209 E0.01189 
G1 X-8.093 Y-10.315 E0.01634 
G1 X-9.022 Y-10.315 E0.01189 
G1 X-9.432 Y-11.025 E0.01049 
G1 X-7.567 Y-11.025 E0.02387 
G1 X-7.919 Y-10.415 E0.00901 
G1 X-9.196 Y-10.214 F180.000 
G1 X-9.660 Y-9.410 E0.01189 F180.000 
G1 X-9.022 Y-8.304 E0.01634 
G1 X-8.093 Y-8.304 E0.01189 
G1 X-7.455 Y-7.198 E0.01634 
G1 X-7.919 Y-6.394 E0.01189 
G1 X-7.281 Y-5.288 E0.01634 
G1 X-6.352 Y-5.288 E0.01189 
G1 X-5.714 Y-4.182 E0.01634 
G1 X-6.178 Y-3.378 E0.01189 
G1 X-5.539 Y-2.272 E0.01634 
G1 X-4.611 Y-2.272 E0.01189 

G1 X-4.411 Y-1.926 E0.00511 
G1 X-5.855 Y-1.926 E0.01848 
G1 X-5.714 Y-2.172 E0.00363 
G1 X-6.352 Y-3.278 E0.01634 
G1 X-7.281 Y-3.278 E0.01189 
G1 X-7.919 Y-4.383 E0.01634 
G1 X-7.455 Y-5.188 E0.01189 
G1 X-8.093 Y-6.294 E0.01634 
G1 X-9.022 Y-6.294 E0.01189 
G1 X-9.660 Y-7.399 E0.01634 
G1 X-9.196 Y-8.204 E0.01189 
G1 X-9.835 Y-9.309 E0.01634 
G1 X-10.763 Y-9.309 E0.01189 
G1 X-10.853 Y-9.466 E0.00231 
G1 X-10.853 Y-11.025 E0.01996 
G1 X-9.664 Y-11.025 E0.01522 
G1 X-9.196 Y-10.214 E0.01198 
G1 X-10.763 Y-7.299 F180.000 
G1 X-9.835 Y-7.299 E0.01189 F180.000 
G1 X-9.196 Y-6.193 E0.01634 
G1 X-9.660 Y-5.389 E0.01189 
G1 X-9.022 Y-4.283 E0.01634 
G1 X-8.093 Y-4.283 E0.01189 
G1 X-7.455 Y-3.177 E0.01634 
G1 X-7.919 Y-2.373 E0.01189 
G1 X-7.661 Y-1.926 E0.00660 
G1 X-7.894 Y-1.926 E0.00297 
G1 X-8.093 Y-2.272 E0.00511 
G1 X-9.022 Y-2.272 E0.01189 
G1 X-9.660 Y-3.378 E0.01634 
G1 X-9.196 Y-4.182 E0.01189 
G1 X-9.835 Y-5.288 E0.01634 
G1 X-10.763 Y-5.288 E0.01189 
G1 X-10.853 Y-5.444 E0.00231 
G1 X-10.853 Y-7.455 E0.02574 
G1 X-10.763 Y-7.299 E0.00231 
G1 X-10.763 Y-3.278 F180.000 
G1 X-9.835 Y-3.278 E0.01189 F180.000 
G1 X-9.196 Y-2.172 E0.01634 
G1 X-9.338 Y-1.926 E0.00363 
G1 X-10.853 Y-1.926 E0.01940 
G1 X-10.853 Y-3.434 E0.01929 
G1 X-10.763 Y-3.278 E0.00231 
G1 X-0.304 Y-11.890 F180.000 
G1 X-0.023 Y-12.171 F180.000 
G1 X-0.002 Y-13.297 F180.000 
G1 X0.831 Y-12.464 F180.000 
G1 X10.996 Y-11.214 F180.000 
G1 X10.996 Y-1.713 E0.12161 
F180.000 
G1 X1.495 Y-1.713 E0.12161 
G1 X1.495 Y-11.214 E0.12161 
G1 X10.972 Y-11.214 E0.12130 
G1 X11.166 Y-11.384 F180.000 
G1 X11.166 Y-1.544 E0.08679 
F180.000 
G1 X1.326 Y-1.544 E0.08679 
G1 X1.326 Y-11.384 E0.08679 
G1 X11.142 Y-11.384 E0.08657 
G1 X11.086 Y-11.245 F180.000 
G1 X10.493 Y-10.303 F180.000 
G1 X10.083 Y-11.013 E0.01049 
F180.000 
G1 X10.795 Y-11.013 E0.00911 
G1 X10.795 Y-10.303 E0.00909 
G1 X10.493 Y-10.303 E0.00386 
G1 X9.854 Y-9.398 F180.000 
G1 X10.493 Y-8.292 E0.01634 
F180.000 
G1 X10.795 Y-8.292 E0.00386 

G1 X10.795 Y-6.281 E0.02574 
G1 X10.493 Y-6.281 E0.00386 
G1 X9.854 Y-7.387 E0.01634 
G1 X10.319 Y-8.192 E0.01189 
G1 X9.680 Y-9.297 E0.01634 
G1 X8.751 Y-9.297 E0.01189 
G1 X8.113 Y-10.403 E0.01634 
G1 X8.465 Y-11.013 E0.00901 
G1 X9.851 Y-11.013 E0.01774 
G1 X10.319 Y-10.202 E0.01198 
G1 X9.854 Y-9.398 E0.01189 
G1 X7.010 Y-10.303 F180.000 
G1 X7.939 Y-10.303 E0.01189 
F180.000 
G1 X8.577 Y-9.197 E0.01634 
G1 X8.113 Y-8.393 E0.01189 
G1 X8.751 Y-7.287 E0.01634 
G1 X9.680 Y-7.287 E0.01189 
G1 X10.319 Y-6.181 E0.01634 
G1 X9.854 Y-5.377 E0.01189 
G1 X10.493 Y-4.271 E0.01634 
G1 X10.795 Y-4.271 E0.00386 
G1 X10.795 Y-2.260 E0.02574 
G1 X10.493 Y-2.260 E0.00386 
G1 X9.854 Y-3.366 E0.01634 
G1 X10.319 Y-4.170 E0.01189 
G1 X9.680 Y-5.276 E0.01634 
G1 X8.751 Y-5.276 E0.01189 
G1 X8.113 Y-6.382 E0.01634 
G1 X8.577 Y-7.186 E0.01189 
G1 X7.939 Y-8.292 E0.01634 
G1 X7.010 Y-8.292 E0.01189 
G1 X6.372 Y-9.398 E0.01634 
G1 X6.836 Y-10.202 E0.01189 
G1 X6.368 Y-11.013 E0.01198 
G1 X6.600 Y-11.013 E0.00297 
G1 X7.010 Y-10.303 E0.01049 
G1 X4.631 Y-10.403 F180.000 
G1 X5.269 Y-9.297 E0.01634 F180.000 
G1 X6.198 Y-9.297 E0.01189 
G1 X6.836 Y-8.192 E0.01634 
G1 X6.372 Y-7.387 E0.01189 
G1 X7.010 Y-6.281 E0.01634 
G1 X7.939 Y-6.281 E0.01189 
G1 X8.577 Y-5.176 E0.01634 
G1 X8.113 Y-4.371 E0.01189 
G1 X8.751 Y-3.266 E0.01634 
G1 X9.680 Y-3.266 E0.01189 
G1 X10.319 Y-2.160 E0.01634 
G1 X10.177 Y-1.914 E0.00363 
G1 X8.371 Y-1.914 E0.02312 
G1 X8.113 Y-2.361 E0.00660 
G1 X8.577 Y-3.165 E0.01189 
G1 X7.939 Y-4.271 E0.01634 
G1 X7.010 Y-4.271 E0.01189 
G1 X6.372 Y-5.377 E0.01634 
G1 X6.836 Y-6.181 E0.01189 
G1 X6.198 Y-7.287 E0.01634 
G1 X5.269 Y-7.287 E0.01189 
G1 X4.631 Y-8.393 E0.01634 
G1 X5.095 Y-9.197 E0.01189 
G1 X4.456 Y-10.303 E0.01634 
G1 X3.528 Y-10.303 E0.01189 
G1 X3.118 Y-11.013 E0.01049 
G1 X4.982 Y-11.013 E0.02387 
G1 X4.631 Y-10.403 E0.00901 
G1 X3.354 Y-10.202 F180.000 
G1 X2.889 Y-9.398 E0.01189 F180.000 
G1 X3.528 Y-8.292 E0.01634 
G1 X4.456 Y-8.292 E0.01189 
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G1 X5.095 Y-7.186 E0.01634 
G1 X4.631 Y-6.382 E0.01189 
G1 X5.269 Y-5.276 E0.01634 
G1 X6.198 Y-5.276 E0.01189 
G1 X6.836 Y-4.170 E0.01634 
G1 X6.372 Y-3.366 E0.01189 
G1 X7.010 Y-2.260 E0.01634 
G1 X7.939 Y-2.260 E0.01189 
G1 X8.139 Y-1.914 E0.00511 
G1 X6.694 Y-1.914 E0.01848 
G1 X6.836 Y-2.160 E0.00363 
G1 X6.198 Y-3.266 E0.01634 
G1 X5.269 Y-3.266 E0.01189 
G1 X4.631 Y-4.371 E0.01634 
G1 X5.095 Y-5.176 E0.01189 
G1 X4.456 Y-6.281 E0.01634 
G1 X3.528 Y-6.281 E0.01189 
G1 X2.889 Y-7.387 E0.01634 
G1 X3.354 Y-8.192 E0.01189 
G1 X2.715 Y-9.297 E0.01634 
G1 X1.786 Y-9.297 E0.01189 
G1 X1.696 Y-9.454 E0.00231 
G1 X1.696 Y-11.013 E0.01996 
G1 X2.886 Y-11.013 E0.01522 
G1 X3.354 Y-10.202 E0.01198 
G1 X1.786 Y-7.287 F180.000 
G1 X2.715 Y-7.287 E0.01189 F180.000 
G1 X3.354 Y-6.181 E0.01634 
G1 X2.889 Y-5.377 E0.01189 
G1 X3.528 Y-4.271 E0.01634 
G1 X4.456 Y-4.271 E0.01189 
G1 X5.095 Y-3.165 E0.01634 
G1 X4.631 Y-2.361 E0.01189 
G1 X4.888 Y-1.914 E0.00660 
G1 X4.656 Y-1.914 E0.00297 
G1 X4.456 Y-2.260 E0.00511 
G1 X3.528 Y-2.260 E0.01189 
G1 X2.889 Y-3.366 E0.01634 
G1 X3.354 Y-4.170 E0.01189 
G1 X2.715 Y-5.276 E0.01634 
G1 X1.786 Y-5.276 E0.01189 
G1 X1.696 Y-5.432 E0.00231 
G1 X1.696 Y-7.443 E0.02574 
G1 X1.786 Y-7.287 E0.00231 
G1 X1.786 Y-3.266 F180.000 
G1 X2.715 Y-3.266 E0.01189 F180.000 
G1 X3.354 Y-2.160 E0.01634 
G1 X3.212 Y-1.914 E0.00363 
G1 X1.696 Y-1.914 E0.01940 
G1 X1.696 Y-3.422 E0.01929 
G1 X1.786 Y-3.266 E0.00231 
G1 Z0.460 F180.000 
G1 X11.660 Y-0.464 F180.000 
G1 X11.660 Y-0.028 F180.000 
G1 X11.809 Y-0.041 F180.000 
G1 X11.809 Y0.407 F180.000 
G1 X11.145 Y1.656 F180.000 
G1 X11.145 Y11.157 E0.12161 
F180.000 
G1 X1.645 Y11.157 E0.12161 
G1 X1.645 Y1.656 E0.12161 
G1 X11.121 Y1.656 E0.12130 
G1 X11.315 Y1.487 F180.000 
G1 X11.315 Y11.327 E0.08679 
F180.000 
G1 X1.475 Y11.327 E0.08679 
G1 X1.475 Y1.487 E0.08679 
G1 X11.291 Y1.487 E0.08657 
G1 X11.235 Y1.625 F180.000 
G1 X10.468 Y2.467 F180.000 

G1 X10.944 Y2.467 E0.00609 F180.000 
G1 X10.944 Y2.668 E0.00257 
G1 X10.468 Y2.668 E0.00609 
G1 X10.004 Y3.472 E0.01189 
G1 X8.727 Y3.472 E0.01634 
G1 X8.263 Y2.668 E0.01189 
G1 X6.986 Y2.668 E0.01634 
G1 X6.521 Y3.472 E0.01189 
G1 X5.244 Y3.472 E0.01634 
G1 X4.780 Y2.668 E0.01189 
G1 X3.503 Y2.668 E0.01634 
G1 X3.039 Y3.472 E0.01189 
G1 X1.846 Y3.472 E0.01527 
G1 X1.846 Y1.857 E0.02067 
G1 X3.151 Y1.857 E0.01671 
G1 X3.503 Y2.467 E0.00901 
G1 X4.780 Y2.467 E0.01634 
G1 X5.132 Y1.857 E0.00901 
G1 X6.634 Y1.857 E0.01922 
G1 X6.986 Y2.467 E0.00901 
G1 X8.263 Y2.467 E0.01634 
G1 X8.614 Y1.857 E0.00901 
G1 X10.116 Y1.857 E0.01922 
G1 X10.468 Y2.467 E0.00901 
G1 X3.503 Y4.477 F180.000 
G1 X4.780 Y4.477 E0.01634 F180.000 
G1 X5.244 Y3.673 E0.01189 
G1 X6.521 Y3.673 E0.01634 
G1 X6.986 Y4.477 E0.01189 
G1 X8.263 Y4.477 E0.01634 
G1 X8.727 Y3.673 E0.01189 
G1 X10.004 Y3.673 E0.01634 
G1 X10.468 Y4.477 E0.01189 
G1 X10.944 Y4.477 E0.00609 
G1 X10.944 Y4.679 E0.00257 
G1 X10.468 Y4.679 E0.00609 
G1 X10.004 Y5.483 E0.01189 
G1 X8.727 Y5.483 E0.01634 
G1 X8.263 Y4.679 E0.01189 
G1 X6.986 Y4.679 E0.01634 
G1 X6.521 Y5.483 E0.01189 
G1 X5.244 Y5.483 E0.01634 
G1 X4.780 Y4.679 E0.01189 
G1 X3.503 Y4.679 E0.01634 
G1 X3.039 Y5.483 E0.01189 
G1 X1.846 Y5.483 E0.01527 
G1 X1.846 Y3.673 E0.02316 
G1 X3.039 Y3.673 E0.01527 
G1 X3.503 Y4.477 E0.01189 
G1 X3.503 Y6.488 F180.000 
G1 X4.780 Y6.488 E0.01634 F180.000 
G1 X5.244 Y5.684 E0.01189 
G1 X6.521 Y5.684 E0.01634 
G1 X6.986 Y6.488 E0.01189 
G1 X8.263 Y6.488 E0.01634 
G1 X8.727 Y5.684 E0.01189 
G1 X10.004 Y5.684 E0.01634 
G1 X10.468 Y6.488 E0.01189 
G1 X10.944 Y6.488 E0.00609 
G1 X10.944 Y6.689 E0.00257 
G1 X10.468 Y6.689 E0.00609 
G1 X10.004 Y7.493 E0.01189 
G1 X8.727 Y7.493 E0.01634 
G1 X8.263 Y6.689 E0.01189 
G1 X6.986 Y6.689 E0.01634 
G1 X6.521 Y7.493 E0.01189 
G1 X5.244 Y7.493 E0.01634 
G1 X4.780 Y6.689 E0.01189 
G1 X3.503 Y6.689 E0.01634 
G1 X3.039 Y7.493 E0.01189 

G1 X1.846 Y7.493 E0.01527 
G1 X1.846 Y5.684 E0.02316 
G1 X3.039 Y5.684 E0.01527 
G1 X3.503 Y6.488 E0.01189 
G1 X3.503 Y8.499 F180.000 
G1 X4.780 Y8.499 E0.01634 F180.000 
G1 X5.244 Y7.694 E0.01189 
G1 X6.521 Y7.694 E0.01634 
G1 X6.986 Y8.499 E0.01189 
G1 X8.263 Y8.499 E0.01634 
G1 X8.727 Y7.694 E0.01189 
G1 X10.004 Y7.694 E0.01634 
G1 X10.468 Y8.499 E0.01189 
G1 X10.944 Y8.499 E0.00609 
G1 X10.944 Y8.700 E0.00257 
G1 X10.468 Y8.700 E0.00609 
G1 X10.004 Y9.504 E0.01189 
G1 X8.727 Y9.504 E0.01634 
G1 X8.263 Y8.700 E0.01189 
G1 X6.986 Y8.700 E0.01634 
G1 X6.521 Y9.504 E0.01189 
G1 X5.244 Y9.504 E0.01634 
G1 X4.780 Y8.700 E0.01189 
G1 X3.503 Y8.700 E0.01634 
G1 X3.039 Y9.504 E0.01189 
G1 X1.846 Y9.504 E0.01527 
G1 X1.846 Y7.694 E0.02316 
G1 X3.039 Y7.694 E0.01527 
G1 X3.503 Y8.499 E0.01189 
G1 X3.503 Y10.509 F180.000 
G1 X4.780 Y10.509 E0.01634 F180.000 
G1 X5.244 Y9.705 E0.01189 
G1 X6.521 Y9.705 E0.01634 
G1 X6.986 Y10.509 E0.01189 
G1 X8.263 Y10.509 E0.01634 
G1 X8.727 Y9.705 E0.01189 
G1 X10.004 Y9.705 E0.01634 
G1 X10.468 Y10.509 E0.01189 
G1 X10.944 Y10.509 E0.00609 
G1 X10.944 Y10.710 E0.00257 
G1 X10.468 Y10.710 E0.00609 
G1 X10.327 Y10.956 E0.00363 
G1 X8.404 Y10.956 E0.02461 
G1 X8.263 Y10.710 E0.00363 
G1 X6.986 Y10.710 E0.01634 
G1 X6.844 Y10.956 E0.00363 
G1 X4.922 Y10.956 E0.02461 
G1 X4.780 Y10.710 E0.00363 
G1 X3.503 Y10.710 E0.01634 
G1 X3.362 Y10.956 E0.00363 
G1 X1.846 Y10.956 E0.01940 
G1 X1.846 Y9.705 E0.01601 
G1 X3.039 Y9.705 E0.01527 
G1 X3.503 Y10.509 E0.01189 
G1 X0.395 Y0.992 F180.000 
G1 X-0.003 Y0.992 F180.000 
G1 X0.000 Y1.061 F180.000 
G1 X-0.395 Y1.061 F180.000 
G1 X-1.645 Y1.725 F180.000 
G1 X-1.645 Y11.226 E0.12161 
F180.000 
G1 X-11.145 Y11.226 E0.12161 
G1 X-11.145 Y1.725 E0.12161 
G1 X-1.669 Y1.725 E0.12130 
G1 X-1.475 Y1.556 F180.000 
G1 X-1.475 Y11.396 E0.08679 
F180.000 
G1 X-11.315 Y11.396 E0.08679 
G1 X-11.315 Y1.556 E0.08679 
G1 X-1.499 Y1.556 E0.08657 
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G1 X-1.555 Y1.694 F180.000 
G1 X-2.322 Y2.536 F180.000 
G1 X-1.846 Y2.536 E0.00609 F180.000 
G1 X-1.846 Y2.737 E0.00257 
G1 X-2.322 Y2.737 E0.00609 
G1 X-2.786 Y3.541 E0.01189 
G1 X-4.063 Y3.541 E0.01634 
G1 X-4.528 Y2.737 E0.01189 
G1 X-5.804 Y2.737 E0.01634 
G1 X-6.269 Y3.541 E0.01189 
G1 X-7.546 Y3.541 E0.01634 
G1 X-8.010 Y2.737 E0.01189 
G1 X-9.287 Y2.737 E0.01634 
G1 X-9.751 Y3.541 E0.01189 
G1 X-10.944 Y3.541 E0.01527 
G1 X-10.944 Y1.926 E0.02067 
G1 X-9.639 Y1.926 E0.01671 
G1 X-9.287 Y2.536 E0.00901 
G1 X-8.010 Y2.536 E0.01634 
G1 X-7.658 Y1.926 E0.00901 
G1 X-6.156 Y1.926 E0.01922 
G1 X-5.804 Y2.536 E0.00901 
G1 X-4.528 Y2.536 E0.01634 
G1 X-4.176 Y1.926 E0.00901 
G1 X-2.674 Y1.926 E0.01922 
G1 X-2.322 Y2.536 E0.00901 
G1 X-9.287 Y4.547 F180.000 
G1 X-8.010 Y4.547 E0.01634 F180.000 
G1 X-7.546 Y3.742 E0.01189 
G1 X-6.269 Y3.742 E0.01634 
G1 X-5.804 Y4.547 E0.01189 
G1 X-4.528 Y4.547 E0.01634 
G1 X-4.063 Y3.742 E0.01189 
G1 X-2.786 Y3.742 E0.01634 
G1 X-2.322 Y4.547 E0.01189 
G1 X-1.846 Y4.547 E0.00609 
G1 X-1.846 Y4.748 E0.00257 
G1 X-2.322 Y4.748 E0.00609 
G1 X-2.786 Y5.552 E0.01189 
G1 X-4.063 Y5.552 E0.01634 
G1 X-4.528 Y4.748 E0.01189 
G1 X-5.804 Y4.748 E0.01634 
G1 X-6.269 Y5.552 E0.01189 
G1 X-7.546 Y5.552 E0.01634 
G1 X-8.010 Y4.748 E0.01189 
G1 X-9.287 Y4.748 E0.01634 
G1 X-9.751 Y5.552 E0.01189 
G1 X-10.944 Y5.552 E0.01527 
G1 X-10.944 Y3.742 E0.02316 
G1 X-9.751 Y3.742 E0.01527 
G1 X-9.287 Y4.547 E0.01189 
G1 X-9.287 Y6.557 F180.000 
G1 X-8.010 Y6.557 E0.01634 F180.000 
G1 X-7.546 Y5.753 E0.01189 
G1 X-6.269 Y5.753 E0.01634 
G1 X-5.804 Y6.557 E0.01189 
G1 X-4.528 Y6.557 E0.01634 
G1 X-4.063 Y5.753 E0.01189 
G1 X-2.786 Y5.753 E0.01634 
G1 X-2.322 Y6.557 E0.01189 
G1 X-1.846 Y6.557 E0.00609 
G1 X-1.846 Y6.758 E0.00257 
G1 X-2.322 Y6.758 E0.00609 
G1 X-2.786 Y7.562 E0.01189 
G1 X-4.063 Y7.562 E0.01634 
G1 X-4.528 Y6.758 E0.01189 
G1 X-5.804 Y6.758 E0.01634 
G1 X-6.269 Y7.562 E0.01189 
G1 X-7.546 Y7.562 E0.01634 
G1 X-8.010 Y6.758 E0.01189 

G1 X-9.287 Y6.758 E0.01634 
G1 X-9.751 Y7.562 E0.01189 
G1 X-10.944 Y7.562 E0.01527 
G1 X-10.944 Y5.753 E0.02316 
G1 X-9.751 Y5.753 E0.01527 
G1 X-9.287 Y6.557 E0.01189 
G1 X-9.287 Y8.568 F180.000 
G1 X-8.010 Y8.568 E0.01634 F180.000 
G1 X-7.546 Y7.764 E0.01189 
G1 X-6.269 Y7.764 E0.01634 
G1 X-5.804 Y8.568 E0.01189 
G1 X-4.528 Y8.568 E0.01634 
G1 X-4.063 Y7.764 E0.01189 
G1 X-2.786 Y7.764 E0.01634 
G1 X-2.322 Y8.568 E0.01189 
G1 X-1.846 Y8.568 E0.00609 
G1 X-1.846 Y8.769 E0.00257 
G1 X-2.322 Y8.769 E0.00609 
G1 X-2.786 Y9.573 E0.01189 
G1 X-4.063 Y9.573 E0.01634 
G1 X-4.528 Y8.769 E0.01189 
G1 X-5.804 Y8.769 E0.01634 
G1 X-6.269 Y9.573 E0.01189 
G1 X-7.546 Y9.573 E0.01634 
G1 X-8.010 Y8.769 E0.01189 
G1 X-9.287 Y8.769 E0.01634 
G1 X-9.751 Y9.573 E0.01189 
G1 X-10.944 Y9.573 E0.01527 
G1 X-10.944 Y7.764 E0.02316 
G1 X-9.751 Y7.764 E0.01527 
G1 X-9.287 Y8.568 E0.01189 
G1 X-9.287 Y10.578 F180.000 
G1 X-8.010 Y10.578 E0.01634 
F180.000 
G1 X-7.546 Y9.774 E0.01189 
G1 X-6.269 Y9.774 E0.01634 
G1 X-5.804 Y10.578 E0.01189 
G1 X-4.528 Y10.578 E0.01634 
G1 X-4.063 Y9.774 E0.01189 
G1 X-2.786 Y9.774 E0.01634 
G1 X-2.322 Y10.578 E0.01189 
G1 X-1.846 Y10.578 E0.00609 
G1 X-1.846 Y10.779 E0.00257 
G1 X-2.322 Y10.779 E0.00609 
G1 X-2.464 Y11.025 E0.00363 
G1 X-4.386 Y11.025 E0.02461 
G1 X-4.528 Y10.779 E0.00363 
G1 X-5.804 Y10.779 E0.01634 
G1 X-5.946 Y11.025 E0.00363 
G1 X-7.868 Y11.025 E0.02461 
G1 X-8.010 Y10.779 E0.00363 
G1 X-9.287 Y10.779 E0.01634 
G1 X-9.429 Y11.025 E0.00363 
G1 X-10.944 Y11.025 E0.01940 
G1 X-10.944 Y9.774 E0.01601 
G1 X-9.751 Y9.774 E0.01527 
G1 X-9.287 Y10.578 E0.01189 
G1 X-0.981 Y0.476 F180.000 
G1 X-0.369 Y0.045 F180.000 
G1 X-0.035 Y-0.768 F180.000 
G1 X-0.035 Y-0.792 F180.000 
G1 X-0.304 Y-1.061 F180.000 
G1 X-1.554 Y-11.226 F180.000 
G1 X-1.554 Y-1.725 E0.12161 F180.000 
G1 X-11.054 Y-1.725 E0.12161 
G1 X-11.054 Y-11.226 E0.12161 
G1 X-1.578 Y-11.226 E0.12130 
G1 X-1.384 Y-11.396 F180.000 
G1 X-1.384 Y-1.556 E0.08679 F180.000 
G1 X-11.224 Y-1.556 E0.08679 

G1 X-11.224 Y-11.396 E0.08679 
G1 X-1.408 Y-11.396 E0.08657 
G1 X-1.464 Y-11.257 F180.000 
G1 X-2.231 Y-10.415 F180.000 
G1 X-1.755 Y-10.415 E0.00609 
F180.000 
G1 X-1.755 Y-10.214 E0.00257 
G1 X-2.231 Y-10.214 E0.00609 
G1 X-2.695 Y-9.410 E0.01189 
G1 X-3.972 Y-9.410 E0.01634 
G1 X-4.437 Y-10.214 E0.01189 
G1 X-5.714 Y-10.214 E0.01634 
G1 X-6.178 Y-9.410 E0.01189 
G1 X-7.455 Y-9.410 E0.01634 
G1 X-7.919 Y-10.214 E0.01189 
G1 X-9.196 Y-10.214 E0.01634 
G1 X-9.660 Y-9.410 E0.01189 
G1 X-10.853 Y-9.410 E0.01527 
G1 X-10.853 Y-11.025 E0.02067 
G1 X-9.548 Y-11.025 E0.01671 
G1 X-9.196 Y-10.415 E0.00901 
G1 X-7.919 Y-10.415 E0.01634 
G1 X-7.567 Y-11.025 E0.00901 
G1 X-6.065 Y-11.025 E0.01922 
G1 X-5.714 Y-10.415 E0.00901 
G1 X-4.437 Y-10.415 E0.01634 
G1 X-4.085 Y-11.025 E0.00901 
G1 X-2.583 Y-11.025 E0.01922 
G1 X-2.231 Y-10.415 E0.00901 
G1 X-9.196 Y-8.405 F180.000 
G1 X-7.919 Y-8.405 E0.01634 F180.000 
G1 X-7.455 Y-9.209 E0.01189 
G1 X-6.178 Y-9.209 E0.01634 
G1 X-5.714 Y-8.405 E0.01189 
G1 X-4.437 Y-8.405 E0.01634 
G1 X-3.972 Y-9.209 E0.01189 
G1 X-2.695 Y-9.209 E0.01634 
G1 X-2.231 Y-8.405 E0.01189 
G1 X-1.755 Y-8.405 E0.00609 
G1 X-1.755 Y-8.204 E0.00257 
G1 X-2.231 Y-8.204 E0.00609 
G1 X-2.695 Y-7.399 E0.01189 
G1 X-3.972 Y-7.399 E0.01634 
G1 X-4.437 Y-8.204 E0.01189 
G1 X-5.714 Y-8.204 E0.01634 
G1 X-6.178 Y-7.399 E0.01189 
G1 X-7.455 Y-7.399 E0.01634 
G1 X-7.919 Y-8.204 E0.01189 
G1 X-9.196 Y-8.204 E0.01634 
G1 X-9.660 Y-7.399 E0.01189 
G1 X-10.853 Y-7.399 E0.01527 
G1 X-10.853 Y-9.209 E0.02316 
G1 X-9.660 Y-9.209 E0.01527 
G1 X-9.196 Y-8.405 E0.01189 
G1 X-9.196 Y-6.394 F180.000 
G1 X-7.919 Y-6.394 E0.01634 F180.000 
G1 X-7.455 Y-7.198 E0.01189 
G1 X-6.178 Y-7.198 E0.01634 
G1 X-5.714 Y-6.394 E0.01189 
G1 X-4.437 Y-6.394 E0.01634 
G1 X-3.972 Y-7.198 E0.01189 
G1 X-2.695 Y-7.198 E0.01634 
G1 X-2.231 Y-6.394 E0.01189 
G1 X-1.755 Y-6.394 E0.00609 
G1 X-1.755 Y-6.193 E0.00257 
G1 X-2.231 Y-6.193 E0.00609 
G1 X-2.695 Y-5.389 E0.01189 
G1 X-3.972 Y-5.389 E0.01634 
G1 X-4.437 Y-6.193 E0.01189 
G1 X-5.714 Y-6.193 E0.01634 
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G1 X-6.178 Y-5.389 E0.01189 
G1 X-7.455 Y-5.389 E0.01634 
G1 X-7.919 Y-6.193 E0.01189 
G1 X-9.196 Y-6.193 E0.01634 
G1 X-9.660 Y-5.389 E0.01189 
G1 X-10.853 Y-5.389 E0.01527 
G1 X-10.853 Y-7.198 E0.02316 
G1 X-9.660 Y-7.198 E0.01527 
G1 X-9.196 Y-6.394 E0.01189 
G1 X-9.196 Y-4.383 F180.000 
G1 X-7.919 Y-4.383 E0.01634 F180.000 
G1 X-7.455 Y-5.188 E0.01189 
G1 X-6.178 Y-5.188 E0.01634 
G1 X-5.714 Y-4.383 E0.01189 
G1 X-4.437 Y-4.383 E0.01634 
G1 X-3.972 Y-5.188 E0.01189 
G1 X-2.695 Y-5.188 E0.01634 
G1 X-2.231 Y-4.383 E0.01189 
G1 X-1.755 Y-4.383 E0.00609 
G1 X-1.755 Y-4.182 E0.00257 
G1 X-2.231 Y-4.182 E0.00609 
G1 X-2.695 Y-3.378 E0.01189 
G1 X-3.972 Y-3.378 E0.01634 
G1 X-4.437 Y-4.182 E0.01189 
G1 X-5.714 Y-4.182 E0.01634 
G1 X-6.178 Y-3.378 E0.01189 
G1 X-7.455 Y-3.378 E0.01634 
G1 X-7.919 Y-4.182 E0.01189 
G1 X-9.196 Y-4.182 E0.01634 
G1 X-9.660 Y-3.378 E0.01189 
G1 X-10.853 Y-3.378 E0.01527 
G1 X-10.853 Y-5.188 E0.02316 
G1 X-9.660 Y-5.188 E0.01527 
G1 X-9.196 Y-4.383 E0.01189 
G1 X-9.196 Y-2.373 F180.000 
G1 X-7.919 Y-2.373 E0.01634 F180.000 

G1 X-7.455 Y-3.177 E0.01189 
G1 X-6.178 Y-3.177 E0.01634 
G1 X-5.714 Y-2.373 E0.01189 
G1 X-4.437 Y-2.373 E0.01634 
G1 X-3.972 Y-3.177 E0.01189 
G1 X-2.695 Y-3.177 E0.01634 
G1 X-2.231 Y-2.373 E0.01189 
G1 X-1.755 Y-2.373 E0.00609 
G1 X-1.755 Y-2.172 E0.00257 
G1 X-2.231 Y-2.172 E0.00609 
G1 X-2.373 Y-1.926 E0.00363 
G1 X-4.295 Y-1.926 E0.02461 
G1 X-4.437 Y-2.172 E0.00363 
G1 X-5.714 Y-2.172 E0.01634 
G1 X-5.855 Y-1.926 E0.00363 
G1 X-7.778 Y-1.926 E0.02461 
G1 X-7.919 Y-2.172 E0.00363 
G1 X-9.196 Y-2.172 E0.01634 
G1 X-9.338 Y-1.926 E0.00363 
G1 X-10.853 Y-1.926 E0.01940 
G1 X-10.853 Y-3.177 E0.01601 
G1 X-9.660 Y-3.177 E0.01527 
G1 X-9.196 Y-2.373 E0.01189 
G1 X-0.304 Y-11.890 F180.000 
G1 X-0.023 Y-12.171 F180.000 
G1 X-0.002 Y-13.297 F180.000 
G1 X0.831 Y-12.464 F180.000 
G1 X10.996 Y-11.214 F180.000 
G1 X10.996 Y-1.713 E0.12161 
F180.000 
G1 X1.495 Y-1.713 E0.12161 
G1 X1.495 Y-11.214 E0.12161 
G1 X10.972 Y-11.214 E0.12130 
G1 X11.166 Y-11.384 F180.000 
G1 X11.166 Y-1.544 E0.08679 
F180.000 

G1 X1.326 Y-1.544 E0.08679 
G1 X1.326 Y-11.384 E0.08679 
G1 X11.142 Y-11.384 E0.08657 
G1 X11.086 Y-11.245 F180.000 
G1 X10.319 Y-10.403 F180.000 
G1 X10.795 Y-10.403 E0.00609 
F180.000 
G1 X10.795 Y-10.202 E0.00257 
G1 X10.319 Y-10.202 E0.00609 
G1 X9.854 Y-9.398 E0.01189 
G1 X8.577 Y-9.398 E0.01634 
G1 X8.113 Y-10.202 E0.01189 
G1 X6.836 Y-10.202 E0.01634 
G1 X6.372 Y-9.398 E0.01189 
G1 X5.095 Y-9.398 E0.01634 
G1 X4.631 Y-10.202 E0.01189 
G1 X3.354 Y-10.202 E0.01634 
G1 X2.889 Y-9.398 E0.01189 
G1 X1.696 Y-9.398 E0.01527 
G1 X1.696 Y-11.013 E0.02067 
G1 X3.002 Y-11.013 E0.01671 
G1 X3.354 Y-10.403 E0.00901 
G1 X4.631 Y-10.403 E0.01634 
G1 X4.982 Y-11.013 E0.00901 
G1 X6.484 Y-11.013 E0.01922 
G1 X6.836 Y-10.403 E0.00901 
G1 X8.113 Y-10.403 E0.01634 
G1 X8.465 Y-11.013 E0.00901 
G1 X9.967 Y-11.013 E0.01922 
G1 X10.319 Y-10.403 E0.00901 
G1 X3.354 Y-8.393 F180.000 
G1 X4.631 Y-8.393 E0.01634 F180.000 
G1 X5.095 Y-9.197 E0.01189 
G1 X6.372 Y-9.197 E0.01634 
G1 X6.836 Y-8.393 E0.01189 
G1 X8.113 Y-8.393 E0.01634 

 
PCL Rectilinear Scaffolds 
 
<?xml version="1.0"?> 
<profile name="Default" version="2017-03-01 08:00:00" app="S3D-Software 4.0.0"> 
  <printMaterial>PLA</printMaterial> 
  <printQuality>Medium</printQuality> 
  <printExtruders></printExtruders> 
  <extruder name="Primary Extruder"> 
    
<toolheadNumber>0</toolheadNumber
> 
    <diameter>0.35</diameter> 
    <autoWidth>0</autoWidth> 
    <width>0.4</width> 
    
<extrusionMultiplier>0.9</extrusionMul
tiplier> 
    <useRetract>1</useRetract> 
    
<retractionDistance>1</retractionDista
nce> 
    
<extraRestartDistance>0</extraRestartD
istance> 
    <retractionZLift>0</retractionZLift> 
    
<retractionSpeed>1800</retractionSpee
d> 
    <useCoasting>0</useCoasting> 

    
<coastingDistance>0.2</coastingDistanc
e> 
    <useWipe>0</useWipe> 
    <wipeDistance>5</wipeDistance> 
  </extruder> 
  
<primaryExtruder>0</primaryExtruder> 
  <layerHeight>0.2</layerHeight> 
  <topSolidLayers>3</topSolidLayers> 
  
<bottomSolidLayers>3</bottomSolidLay
ers> 
  
<perimeterOutlines>2</perimeterOutlin
es> 
  
<printPerimetersInsideOut>1</printPeri
metersInsideOut> 
  
<startPointOption>2</startPointOption> 
  
<startPointOriginX>0</startPointOriginX
> 

  
<startPointOriginY>0</startPointOriginY
> 
  
<startPointOriginZ>300</startPointOrigi
nZ> 
  
<sequentialIslands>0</sequentialIslands
> 
  <spiralVaseMode>0</spiralVaseMode> 
  
<firstLayerHeightPercentage>100</firstL
ayerHeightPercentage> 
  
<firstLayerWidthPercentage>100</firstL
ayerWidthPercentage> 
  
<firstLayerUnderspeed>0.5</firstLayerU
nderspeed> 
  <useRaft>0</useRaft> 
  <raftExtruder>0</raftExtruder> 
  <raftTopLayers>3</raftTopLayers> 
  <raftBaseLayers>2</raftBaseLayers> 
  <raftOffset>3</raftOffset> 
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<raftSeparationDistance>0.14</raftSepa
rationDistance> 
  <raftTopInfill>100</raftTopInfill> 
  
<aboveRaftSpeedMultiplier>0.3</above
RaftSpeedMultiplier> 
  <useSkirt>1</useSkirt> 
  <skirtExtruder>0</skirtExtruder> 
  <skirtLayers>1</skirtLayers> 
  <skirtOutlines>2</skirtOutlines> 
  <skirtOffset>4</skirtOffset> 
  <usePrimePillar>0</usePrimePillar> 
  
<primePillarExtruder>999</primePillarE
xtruder> 
  
<primePillarWidth>12</primePillarWidt
h> 
  
<primePillarLocation>7</primePillarLoc
ation> 
  
<primePillarSpeedMultiplier>1</primePi
llarSpeedMultiplier> 
  <useOozeShield>0</useOozeShield> 
  
<oozeShieldExtruder>999</oozeShieldE
xtruder> 
  
<oozeShieldOffset>2</oozeShieldOffset
> 
  
<oozeShieldOutlines>1</oozeShieldOutl
ines> 
  
<oozeShieldSidewallShape>1</oozeShiel
dSidewallShape> 
  
<oozeShieldSidewallAngle>30</oozeShi
eldSidewallAngle> 
  
<oozeShieldSpeedMultiplier>1</oozeShi
eldSpeedMultiplier> 
  <infillExtruder>0</infillExtruder> 
  
<internalInfillPattern>Rectilinear</inter
nalInfillPattern> 
  
<externalInfillPattern>Rectilinear</exter
nalInfillPattern> 
  <infillPercentage>20</infillPercentage> 
  
<outlineOverlapPercentage>15</outline
OverlapPercentage> 
  
<infillExtrusionWidthPercentage>100</i
nfillExtrusionWidthPercentage> 
  <minInfillLength>5</minInfillLength> 
  
<infillLayerInterval>1</infillLayerInterval
> 
  <internalInfillAngles>45,-
45</internalInfillAngles> 

  
<overlapInternalInfillAngles>0</overlapI
nternalInfillAngles> 
  <externalInfillAngles>45,-
45</externalInfillAngles> 
  
<generateSupport>0</generateSupport
> 
  
<supportExtruder>0</supportExtruder> 
  
<supportInfillPercentage>30</supportIn
fillPercentage> 
  
<supportExtraInflation>0</supportExtra
Inflation> 
  
<supportBaseLayers>0</supportBaseLay
ers> 
  
<denseSupportExtruder>0</denseSupp
ortExtruder> 
  
<denseSupportLayers>0</denseSupport
Layers> 
  
<denseSupportInfillPercentage>70</den
seSupportInfillPercentage> 
  
<supportLayerInterval>1</supportLayerI
nterval> 
  
<supportHorizontalPartOffset>0.3</sup
portHorizontalPartOffset> 
  
<supportUpperSeparationLayers>1</sup
portUpperSeparationLayers> 
  
<supportLowerSeparationLayers>1</sup
portLowerSeparationLayers> 
  <supportType>0</supportType> 
  
<supportGridSpacing>4</supportGridSp
acing> 
  
<maxOverhangAngle>45</maxOverhang
Angle> 
  <supportAngles>0</supportAngles> 
  <temperatureController 
name="Primary Extruder"> 
    
<temperatureNumber>0</temperature
Number> 
    <isHeatedBed>0</isHeatedBed> 
    
<stabilizeAtStartup>1</stabilizeAtStartu
p> 
    <setpoint layer="1" 
temperature="190"/> 
  </temperatureController> 
  <fanSpeed> 
    <setpoint layer="1" speed="0"/> 
    <setpoint layer="2" speed="100"/> 
  </fanSpeed> 

  
<blipFanToFullPower>0</blipFanToFullP
ower> 
  
<adjustSpeedForCooling>1</adjustSpee
dForCooling> 
  
<minSpeedLayerTime>15</minSpeedLa
yerTime> 
  
<minCoolingSpeedSlowdown>20</minC
oolingSpeedSlowdown> 
  
<increaseFanForCooling>0</increaseFan
ForCooling> 
  
<minFanLayerTime>45</minFanLayerTi
me> 
  
<maxCoolingFanSpeed>100</maxCoolin
gFanSpeed> 
  
<increaseFanForBridging>0</increaseFa
nForBridging> 
  
<bridgingFanSpeed>100</bridgingFanSp
eed> 
  <use5D>1</use5D> 
  
<relativeEdistances>0</relativeEdistanc
es> 
  
<allowEaxisZeroing>1</allowEaxisZeroin
g> 
  
<independentExtruderAxes>0</indepen
dentExtruderAxes> 
  <includeM10123>0</includeM10123> 
  <stickySupport>1</stickySupport> 
  
<applyToolheadOffsets>0</applyToolhe
adOffsets> 
  <gcodeXoffset>0</gcodeXoffset> 
  <gcodeYoffset>0</gcodeYoffset> 
  <gcodeZoffset>0</gcodeZoffset> 
  
<overrideMachineDefinition>0</overrid
eMachineDefinition> 
  
<machineTypeOverride>0</machineTyp
eOverride> 
  
<strokeXoverride>200</strokeXoverride
> 
  
<strokeYoverride>200</strokeYoverride
> 
  
<strokeZoverride>200</strokeZoverride
> 
  
<originOffsetXoverride>0</originOffsetX
override> 
  
<originOffsetYoverride>0</originOffsetY
override> 
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<originOffsetZoverride>0</originOffsetZ
override> 
  <homeXdirOverride>-
1</homeXdirOverride> 
  <homeYdirOverride>-
1</homeYdirOverride> 
  <homeZdirOverride>-
1</homeZdirOverride> 
  <flipXoverride>1</flipXoverride> 
  <flipYoverride>-1</flipYoverride> 
  <flipZoverride>1</flipZoverride> 
  
<toolheadOffsets>0,0|0,0|0,0|0,0|0,0|
0,0</toolheadOffsets> 
  
<overrideFirmwareConfiguration>0</ov
errideFirmwareConfiguration> 
  <firmwareTypeOverride>RepRap 
(Marlin/Repetier/Sprinter)</firmwareTy
peOverride> 
  
<GPXconfigOverride>r2</GPXconfigOve
rride> 
  
<baudRateOverride>115200</baudRate
Override> 
  
<overridePrinterModels>0</overridePri
nterModels> 
  
<printerModelsOverride></printerMode
lsOverride> 
  <startingGcode>G28 ; home all 
axes</startingGcode> 
  
<layerChangeGcode></layerChangeGco
de> 
  <retractionGcode></retractionGcode> 
  
<toolChangeGcode></toolChangeGcode
> 
  <endingGcode>M104 S0 ; turn off 
extruder,M140 S0 ; turn off bed,M84 ; 
disable motors</endingGcode> 
  
<exportFileFormat>gcode</exportFileFo
rmat> 
  <celebration>0</celebration> 
  <celebrationSong>Random 
Song</celebrationSong> 
  <postProcessing></postProcessing> 
  <defaultSpeed>3600</defaultSpeed> 
  
<outlineUnderspeed>0.5</outlineUnder
speed> 
  
<solidInfillUnderspeed>0.8</solidInfillU
nderspeed> 
  
<supportUnderspeed>0.8</supportUnd
erspeed> 
  <rapidXYspeed>4800</rapidXYspeed> 
  <rapidZspeed>1000</rapidZspeed> 

  
<minBridgingArea>50</minBridgingArea
> 
  
<bridgingExtraInflation>0</bridgingExtr
aInflation> 
  
<bridgingExtrusionMultiplier>1</bridgin
gExtrusionMultiplier> 
  
<bridgingSpeedMultiplier>1</bridgingSp
eedMultiplier> 
  
<useFixedBridgingAngle>0</useFixedBri
dgingAngle> 
  
<fixedBridgingAngle>0</fixedBridgingAn
gle> 
  
<applyBridgingToPerimeters>0</applyBr
idgingToPerimeters> 
  
<filamentDiameters>1.75|1.75|1.75|1.
75|1.75|1.75</filamentDiameters> 
  
<filamentPricesPerKg>46|46|46|46|46|
46</filamentPricesPerKg> 
  
<filamentDensities>1.25|1.25|1.25|1.2
5|1.25|1.25</filamentDensities> 
  
<useMinPrintHeight>0</useMinPrintHei
ght> 
  <minPrintHeight>0</minPrintHeight> 
  
<useMaxPrintHeight>0</useMaxPrintHe
ight> 
  <maxPrintHeight>0</maxPrintHeight> 
  <useDiaphragm>0</useDiaphragm> 
  
<diaphragmLayerInterval>20</diaphrag
mLayerInterval> 
  <robustSlicing>1</robustSlicing> 
  
<mergeAllIntoSolid>0</mergeAllIntoSoli
d> 
  
<onlyRetractWhenCrossingOutline>1</o
nlyRetractWhenCrossingOutline> 
  
<retractBetweenLayers>1</retractBetw
eenLayers> 
  
<useRetractionMinTravel>0</useRetract
ionMinTravel> 
  
<retractionMinTravel>3</retractionMin
Travel> 
  
<retractWhileWiping>0</retractWhileW
iping> 
  
<onlyWipeOutlines>1</onlyWipeOutline
s> 

  
<avoidCrossingOutline>0</avoidCrossin
gOutline> 
  
<maxMovementDetourFactor>3</max
MovementDetourFactor> 
  
<toolChangeRetractionDistance>12</to
olChangeRetractionDistance> 
  <toolChangeExtraRestartDistance>-
0.5</toolChangeExtraRestartDistance> 
  
<toolChangeRetractionSpeed>600</tool
ChangeRetractionSpeed> 
  
<externalThinWallType>0</externalThin
WallType> 
  
<internalThinWallType>2</internalThin
WallType> 
  
<thinWallAllowedOverlapPercentage>10
</thinWallAllowedOverlapPercentage> 
  
<singleExtrusionMinLength>1</singleExt
rusionMinLength> 
  
<singleExtrusionMinPrintingWidthPerce
ntage>50</singleExtrusionMinPrintingW
idthPercentage> 
  
<singleExtrusionMaxPrintingWidthPerce
ntage>200</singleExtrusionMaxPrinting
WidthPercentage> 
  
<singleExtrusionEndpointExtension>0.2<
/singleExtrusionEndpointExtension> 
  
<horizontalSizeCompensation>0</horizo
ntalSizeCompensation> 
  <autoConfigureMaterial name="PLA"> 
    
<globalExtruderTemperature>190</glob
alExtruderTemperature> 
    
<globalBedTemperature>60</globalBed
Temperature> 
    
<globalExtrusionMultiplier>0.9</globalE
xtrusionMultiplier> 
    <fanSpeed> 
      <setpoint layer="1" speed="0"/> 
      <setpoint layer="2" speed="100"/> 
    </fanSpeed> 
  </autoConfigureMaterial> 
  <autoConfigureMaterial name="ABS"> 
    
<globalExtruderTemperature>225</glob
alExtruderTemperature> 
    
<globalBedTemperature>100</globalBe
dTemperature> 
    
<globalExtrusionMultiplier>1</globalExt
rusionMultiplier> 
    <fanSpeed> 
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      <setpoint layer="1" speed="0"/> 
    </fanSpeed> 
  </autoConfigureMaterial> 
  <autoConfigureMaterial name="PVA"> 
    
<globalExtruderTemperature>195</glob
alExtruderTemperature> 
    
<globalBedTemperature>80</globalBed
Temperature> 
    
<globalExtrusionMultiplier>1</globalExt
rusionMultiplier> 
    <fanSpeed> 
      <setpoint layer="1" speed="0"/> 
      <setpoint layer="2" speed="100"/> 
    </fanSpeed> 
  </autoConfigureMaterial> 
  <autoConfigureMaterial 
name="Nylon"> 
    
<globalExtruderTemperature>220</glob
alExtruderTemperature> 

    
<globalBedTemperature>80</globalBed
Temperature> 
    
<globalExtrusionMultiplier>1</globalExt
rusionMultiplier> 
    <fanSpeed> 
      <setpoint layer="1" speed="0"/> 
    </fanSpeed> 
  </autoConfigureMaterial> 
  <autoConfigureQuality name="Fast"> 
    <layerHeight>0.3</layerHeight> 
    <topSolidLayers>3</topSolidLayers> 
    
<bottomSolidLayers>3</bottomSolidLay
ers> 
    <skirtLayers>1</skirtLayers> 
    
<infillPercentage>15</infillPercentage> 
    
<supportInfillPercentage>25</supportIn
fillPercentage> 
  </autoConfigureQuality> 
  <autoConfigureQuality 
name="Medium"> 

    <layerHeight>0.2</layerHeight> 
    <topSolidLayers>3</topSolidLayers> 
    
<bottomSolidLayers>3</bottomSolidLay
ers> 
    <skirtLayers>1</skirtLayers> 
    
<infillPercentage>20</infillPercentage> 
    
<supportInfillPercentage>30</supportIn
fillPercentage> 
  </autoConfigureQuality> 
  <autoConfigureQuality name="High"> 
    <layerHeight>0.1</layerHeight> 
    <topSolidLayers>4</topSolidLayers> 
    
<bottomSolidLayers>4</bottomSolidLay
ers> 
    <skirtLayers>2</skirtLayers> 
    
<infillPercentage>30</infillPercentage> 
    
<supportInfillPercentage>40</supportIn
fillPercentage> 
  </autoConfigureQuality> 

</profile> 
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Appendix C: Summary of Early Embedded Printing Attempts 

 
   

Variable Settings Attempted 

Needle 30G 
18G 

Print Speed 5% - 100% 

First Layer Print Speed 
10% 
20% 
50% 

Extrusion Multiplier 

0.45 
0.5 
0.6 
0.9 

Bioink Dilution 
None 
5:2 
2:1 

Infill Density 

20% 
40% 
70% 
100%  

Infill Pattern 
Line 

Rectilinear 
Hexagonal 

Infill/Perimeter Overlap 0% 
10% 

Support Gelatin blended microparticle slurry 
Dry culture plastic 

Gelatin Slurry Preparation 

Blend: 60 s, 90 s, 120 s 
Centrifugation: 225G for 5 min, 300G for 5 

min, 3800G for 4 min, 4000G for 5 min 
Temperature: room temperature preparation, 

kept on ice and centrifuged at 4°C 
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Rectilinear (L) and hexagonal (R) 40% infill 
density was too dense 

Rectilinear (L) and hexagonal (R) 20% infill 
resulted in reproducible porosity 

18 G print nozzle and unoptimized 
support slurry preparation 

displaced gelatin microparticles 
during printing 

Unoptimized printing parameters 
resulted in bioink ejection issues 

Compromised print resolution was observed when 
a gelatin slurry blended for 60 s was employed 

Higher print resolution was 
achieved when gelatin slurry 

was blended for 120 s 
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Appendix D: Autofluorescence of PCL Scaffolds 
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Appendix E: Example of the Appearance of Individual Z Slices for Scaffold 

Confocal Microscopy 
 

     
 

     
 

    
 

     
 

      
 

600 µm 
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600 µm 
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Appendix F: Arginase-I Immunofluorescent Staining of Day 9 Murine Wound 

Sections No Primary Antibody Negative Control 
 
 

  
500 µm 
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Appendix G: Research Ethics Approvals
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